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PREFACE

Quantitative description of the electronic structure and property of atoms and

molecules is one of the most important tasks in quantum chemistry. There are

two purposes of this thesis: (i) development of the density matrix theory without

using wavefunction, which may lead to an economical and reliable quantum chem-

ical method; and (ii) achievement of precise theoretical studies of the molecules,

where two electronic processes are important, albeit it is still difficult to assign such

peaks without sophisticated theory.

Parts I and II of this thesis summarize theoretical studies on direct determination

of the density matrix. As has often been pointed out, the wavefunction involves more

information than we need to know. Since all the operators appearing in quantum

mechanics are of the one- and two-body ones, all the elemental physical quantities

can be determined from second-order reduced density matrices (2-RDMs). Hence,

it may be desirable to use the 2-RDM as a basic variable of quantum mechanics

instead of the wave function. However, a difficulty in this approach is that the

N -representability condition, which the Pauli principle requires for RDMs, is still

not fully understood.

However, very accurate theoretical spectroscopy has been established by the

sophisticated wavefunction approach, namely the SAC-CI method. In part III of

this thesis, we studied the valence ionization spectra of some molecules such as

azines (pyrazine, pyridazine, pyrimidine, and s-triazine), methylenecyclopropane

and trans-acrolein. Azines are parent molecules of systems such as nicotinic acid and

the nucleotides cytosine, uracil and thymine. The other molecules are theoretically

interesting since electron correlations play an important role in ionization spectra.

Chapter 1 describes the direct determination of 2-RDM using the density equa-

tion. As the density equation involves higher order (> 2) RDMs, higher RDMs must

be reconstructed from those of lower orders to complement solving the equation.

Therefore, the quality of the solution depends on the reconstruction method. In

this approach, N -representability condition is not explicitly treated. In this study,

we extended the theory to determine not only closed-shell systems but also open-
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shell and excited states. We successfully calculated the open-shell systems including

Be(3S), Be−(2S), B+(3S), B(2S), C2+(3S) and N3+(3S), and the closed-shell systems

involving Be, Be2−, B+, B−, C2+, N3+, H2O and HF. New properties, such as the

transition energies and the spin densities at the nuclei, which were impractical to

calculate via spin-free formulation were also calculated.

Chapter 2 describes the application of the density equation method to the po-

tential energy curves of HF, CH4, BH3, NH3 and H2O. The equilibrium geometries

the vibrational force constants of these molecules were determined by the density

equation method without using wavefunction. The calculated values were in close

agreement with results of the symmetry-adapted cluster (SAC) and full-CI meth-

ods. We encountered convergence problems at the elongated nuclear distance, where

second-order approximation of higher order RDM may fail for strongly correlated

systems.

In chapter 3, we explicitly treated the N -representability condition for direct de-

termination of the density matrix. We employed semidefinite conditions for 2-RDM;

viz., P , Q and G conditions that are defined in terms of the 2-RDM. The ground-

state 2-RDM per se was then variationally determined as a basic variable (density

matrix variational theory; DMVT). The variational calculations were performed us-

ing the recently developed semidefinite programming algorithm (SDPA). Although

these are necessary conditions of N -representability for 2-RDM, we showed that

they are quite restrictive and the results reproducibly yielded the full-CI results.

We obtained 2-RDM directly for various closed- and open-shell atoms and molecules

and the method was very numerically stable; there was not a single case where con-

vergence was not achieved. This approach shows excellent prospects; viz., (i) there

is always a mathematical and numerical solution, (ii) all the N -representability

conditions are linear to the 2-RDM, where we can incorporate for conditional varia-

tions, and (iii) P , Q and G conditions are good restrictive conditions for electronic

Hamiltonian.

In chapter 4, we examined the effectiveness of P , Q and G conditions. We

extensively investigated systems which are recognized to be challenging in quantum

chemistry: the potential energy curves of H4, CO, N2, C2 and Be2, and double-
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and triple- bond dissociations of H2O, NH3, BH3. The DMVT(PQG), using the

P , Q and G conditions as subsidiary conditions, reproduced the full-CI curves very

accurately even up to the dissociation limit. However, the DMVT(PQ) was not

satisfactory, especially in the dissociation limit, and the potential curves were always

repulsive. The size-consistency of the method was discussed and the G-condition

was found to be essential for the correct behavior of the potential curve.

Chapter 5 describes the extension of the DMVT employing other N -representability

conditions. Strictly speaking, P , Q and G conditions are not enough for restric-

tiveness in some cases. We employed the linear inequalities proposed by Weinhold

and Wilson (Weinhold-Wilson inequality) for the new subsidiary conditions. These

conditions are easily introduced in the DMVT method, since they are essentially

linear constraints on 2-RDMs. These conditions have some adverse effects, however;

we could not achieve a drastic improvement of the total energy, which was in the

order of 10−4 au at best.

Chapter 6 describes the accurate theoretical spectroscopy of the ionization spec-

tra of azines. We applied the SAC-CI SD-R method to the outer-valence ionization

spectra of pyrazine, pyridazine, pyrimidine and s-triazine. Since these molecules

have n orbitals of nitrogen, correlation peaks were expected in the low-energy re-

gion, accompanied by π → π∗ or n → π∗ excitation. In this study, we assigned

many correlation peaks which have not been assigned in the region of 18∼24eV. It

was also found that the position of the correlation peaks at 24∼30eV are mainly

governed by the position and the number of nitrogen atoms. Finally, we discussed a

remarkable breakdown of the Koopmans’ theorem; i.e., the order of ionization from

the n and π orbitals is inverted. On analysis of the electron correlation, we found

that this is mainly due to dynamic correlation.

In chapter 7, the outer-valence ionization spectra of methylenecyclopropane and

trans-acrolein were studied by the SAC-CI general-R method. Methylenecyclo-

propane is a structurely constrained molecule, and trans-acrolein has two lone pairs,

and therefore many shake-up states are expected in the lower energy region. For

methylenecyclopropane, three correlation peaks were calculated at around 17eV and

the breakdown of one-particle picture was found in the energy region. For trans-
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acrolein, the CI state was experimentally observed at 15.47eV, although it has not

been theoretically assigned. Many correlation peaks were also calculated in the

higher energy region.
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Part I.

Direct determination of second-order density matrix using

density equation





Chapter 1.

Direct determination of second-order density

matrix using density equation : Open-shell

system and excited state

Abstract

We formulated the density equation (DE) method using spin-dependent density

matrix (SDM) as basic variable and calculated the density matrices of the open-shell

systems and excited states, as well as those of the closed-shell systems, without any

use of the wave function. We calculated the open-shell systems, Be(3S), Be−(2S),

B+(3S), B(2S), C2+(3S) and N3+(3S), and the closed-shell systems Be, Be2−, B+,

B−, C2+, N3+, H2O, and HF. The new properties we calculated are the transition

energies and the spin densities at the nuclei. Generally speaking, the accuracy of the

present results is slightly worse than that of the previous one using spin-independent

density matrix.

3



1.1 Introduction

Since all the operators appearing in quantum mechanics are one- and two-body

ones, all the elemental physical quantities can be determined from the second-order

density matrices (2-DMs). Many-electron wave functions involve more information

than we need to know. Hence, it may be desirable to use the 2-DM as a basic

variable of quantum mechanics instead of the wave function. However, a difficulty

in this approach is that the N -representability condition, which is the condition the

Pauli principle enforces on the DMs, is still not completely known.

One of the authors proposed a non-variational method for a direct determination

of DM in time-independent [1] and time-dependent [2] cases. He showed that the

density equation (DE) he derived is equivalent to the Schrödinger equation in the do-

main of N -representable DMs. However, the DE contains, second, third and fourth

order DMs, so that the number of unknown variables exceeds the number of condi-

tions. When the relations between these DMs are given by the N -representability

condition, or by some approximate concept, we can directly determine the DM by

solving the DE.

Valdemoro and co-workers[3] proposed approximate relations for 2-, 3-, and 4-

DMs based on the fermion’s anti-commutation relation. We derived more accurate

relations via Green’s function method[4, 5], and successfully determined the 2-DMs

of molecules for the first time without any use of the wave function. Mazziotti gave

a reformulation of our approach[6]. Recently, we calculated the potential energy

curves, equilibrium geometries, and vibrational frequencies of molecules by the DE

method [7]. Here, we formulate the DE method using spin-dependent DMs (SDMs)

as basic variables, instead of the spin-independent ones. With this method, we

directly calculate the DMs of open-shell and excited states as well as those of the

closed-shell systems.
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1.2 Theorical outline

The systems which we are interested in are composed of N non-relativistic fermions,

whose Hamiltonian involves up to two body interaction terms,

Ĥ =
∑

i

v(i) +
∑

i>j

w(i, j). (1.1)

The matrix form of the Hamiltonian given by

H i1i2
j1j2 = wi1i2

j1j2 +
1

N − 1
(vi1

j1δ
i2
j2 + vi1

j2δ
i2
j1) (1.2)

is convenient for the present study. Ensemble density matrix ρ is defined by

ρ =
∑
m

αmΨmΨ∗
m (1.3)

where

0 ≤ αm ≤ 1 (1.4)

∑
m

αm = 1 (1.5)

and Ψm is an antisymmetric N -particle function. ρ describes a pure state when the

sum consists of only a single term, i.e.,

ρ = ΨΨ∗. (1.6)

The n-th order density matrices (n)Γ are defined by

(n)Γ(x′1 · · · x′n|x1 · · ·xN) = NCn

∫
ρ(x′1 · · · x′nxn+1 · · · xN |x1 · · · xN)dxn+1 · · · dxN .

(1.7)

where xi stands for space-spin coordinate of i-th electron and NCn the binomial

coefficient. Note that we do not integrate the spin variables of the first n particles,

so that we are able to deal with open-shell system. We refer to (2)Γ as n-SDM or

simply as n-DM. Second-quantized definition equivalent to Eq. (1.7) is

(n)Γi1i2···in
j1j2···jn

=
∑
m

αm

n!
〈Ψm|a†i1a†i2 · · · a†inajn · · · aj2aj1|Ψm〉, (1.8)
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where a† and a denote creation and annihilation operators, respectively. The n-

particle Green’s function[8] is defined as

G(n)(x′1t
′
1 · · · x′nt′n|x1t1 · · · xntn) = (−i)n〈T [φ(x′1t

′
1) · · ·φ(x′nt

′
n)φ(xntn)† · · ·φ(x1t1)

†)]〉
(1.9)

where T denotes time-ordering operator and φ† and φ denote creation and annihi-

lation field operators, respectively. The DMs are related to the Green’s function

by

(n)Γ(x′1 · · · x′n|x1 · · ·xn) =
(−i)n

n!
G(n)(x′10

− · · ·x′n0−|x10
+ · · ·xn0+), (1.10)

where 0+ and 0− denote positive and negative infinitesimals, respectively.

The n-th order density equation (DE) [1] is given by

E(n)Γ = {
n∑

i

v(i) +
n∑

i>j

w(i, j)}(n)Γ

+ (n + 1)
∫
{v(n + 1) +

n∑

i

w(i, n + 1)}(n+1)Γdxn+1

+
1

2
(n + 1)(n + 2)

∫
w(n + 1, n + 2)(n+2)Γdxn+1dxn+2. (1.11)

In matrix form, it it given by

E〈Ψ|a†i1a†i2 · · · a†inajn · · · aj2aj1|Ψ〉 = 〈Ψ|Ĥa†i1a
†
i2 · · · a†inajn · · · aj2aj1|Ψ〉. (1.12)

The right hand side of these two equations are the energy density matrix, R(n)

multiplied by NCn. One of the authors proved in 1976 that each DE with n lager

than or equal to 2 is equivalent, in necessary and sufficient sense, to the Schrödinger

equation if the density matrices involved are N -representable. The matrix form of

the second-order DE is written as,

EΓi1i2
j1j2 =

∑

j3j4i3i4

H i3i4
j3j4〈Ψ|a†i1a†i2aj2aj1a

†
i3a

†
i4aj4aj3|Ψ〉

=
∑

j3j4

Hj1j2
j3j4 Γj3j4

i1i2 + 3
∑

j3j4i4

Hj2i4
j3j4Γ

j1j3j4
i1i2i4

+ 3
∑

j3j4i3

H i3j1
j3j4Γ

j2j3j4
i1i2i3 + 6

∑

j3j4i3i4

H i3i4
j3j4Γ

j1j2j3j4
i1i2i3i4 . (1.13)

Our purpose in this paper is to solve this DE. For this purpose, we have to

represent approximately the 3,4-DMs included in the DE in terms of the 1,2-DMs.
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We use the Green’s function method for this purpose just in the same way as in

the previous paper[4, 5], but here the DMs explicity involve the spin variables. The

resultant decoupling formula of the 3,4-DMs are written using the wedge product

form[6] as

(3)Γ = (1)Γ3 + 3((2)Γ− (1)Γ2) ∧ (1)Γ

−∑

k

Pk(U
ki1
j1j2U

i2i3
kj3

+ Uki2
j1j2U

i3i1
kj3

+ Uki3
j1j2U

i1i2
kj3

+ U j1j2
ki1

Ukj3
i2i3 + U j1j2

ki2
Ukj3

i3i1

+U j1j2
ki3

Ukj3
i1i2 + Uki2

j2j3U
i3i1
kj1

+ Uki3
j2j3U

i1i2
kj1

+ Uki1
j2j3U

i2i3
kj1

+ U j2j3
ki2

Ukj1
i3i1

+U j2j3
ki3

Ukj1
i1i2 + U j2j3

ki1
Ukj1

i2i3 + Uki3
j3j1U

i1i2
kj2

+ Uki1
j3j1U

i2i3
kj2

+ Uki2
j3j1U

i3i1
kj2

+U j3j1
ki3

Ukj2
i1i2 + U j3j1

ki1
Ukj2

i2i3 + U j3j1
ki2

Ukj2
i3i1) (1.14)

(4)Γ = (1)Γ
4
+ 4((3)Γ− (1)Γ3) ∧ (1)Γ− 6((2)Γ− (1)Γ2) ∧ (1)Γ2 +

3

4
U ∧ U (1.15)

where

Γn = Γ ∧ Γ · · · ∧ Γ︸ ︷︷ ︸
n times

. (1.16)

U is called collision term and defined by

U = 2(2)Γ− 2((1)Γ ∧ (1)Γ) (1.17)

Pk is zero or unity for k being unoccupied and occupied, respectively. This decou-

pling approximation is essentially of the second-order in the correlation-correction

perturbation. Note for the 3-DMs, this is not an exact second-order correction, and

we examined previously some correction terms[5].

1.3 Calculational method

Our basic variable is the spin dependent 2-SDM, which has about 256 times lager

freedom than the spin-independent 2-RDM. It is hermitian and antisymmetric. The

3,4-SDMs are represented in terms of the 1,2-DMs by Eqs. (1.14) and (1.15), and

the solution of the DE corresponds to finding the vanishing value of the function,

f .

f((2)Γ) = NC2R((2)Γ)− E(2)Γ. (1.18)
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This function is linearized and solved by using the Newton-Raphson method. The

algorithm is essentially the same as the previous one [4, 5] and is summarized as

follows.

1. Guess initial 2-SDM, which is ordinally Hartree-Fock (2)Γ.

2. Calculate E = Tr((2)ΓH).

3. Construct 3,4-SDM (3)Γ and (4)Γ with (2)Γ and (1)Γ by Eqs. (1.14) and (1.15)

4. Calculate the error function f by Eq. (1.18).

5. Update 2-SDM by using by the Newton-Raphson method.

6. Repeat the procedure 2 ∼ 5 until convergence.

7. Check the N -representability of the resultant (2)Γ.

In applying the Newton-Raphson method[9], we need to calculate the coefficient

matrix Aij = ∂fi

∂xj
, where x denote the variable (2)Γ itself and i, j denote the four

indices of (2)Γ.

As an initial guess of the 2-SDM, we used the Hartree-Fock estimate,

(2)Γi1i2
j1j2 =

1

2
(δi1

j1δ
i2
j2 − δi1

j2δ
i2
j1). (1.19)

where δi
j is Kronecker’s delta, but when the convergency was not good, we used the

full CI 2-SDM.

The above procedure was applied to the open-shell atoms, Be(3S), Be−(2S),

B+(3S), B(2S), C2+(3S), C+(2S), N3+(3S), N2+(2S) and the closed-shell atoms and

molecules, Be, Be2−, B+, B−, C2+, N3+, H2O and HF. The basis set of Be is double-

ζ STO [10] expanded by six GTOs [12]. For B, C and N, double-ζ s-type GTOs

by Huzinaga[13] and Dunning[14] were used. For H2O and HF, STO-6G basis was

used. The geometries of H2O and HF are the experimental ones[15].
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1.4 Results

First, we examine the energy and (2)Γ calculated by the present DE method. In

tables I, II, and III the total energy, the correlation energy error, and the root mean

square deviation of the SDMs calculated by the DE method from the full CI ones

are shown for the open-shell triplet, doublet, and the closed-shell singlet states,

respectively.

Since only s-type basis sets are used, the doublet states of the five-electron atoms

are not the ground 2P state but actually the excited 2S states and the triplet states

of the four-electron atoms are also not the 3P state but the 3S state. Computation-

ally, such S states are easier to calculate than the P states. For the triplet states

summarized in table I, the errors in the correlation energy are less than 0.3 % and

the total energies of the DE method slightly overshoot those of the full CI. Since

the DE method is not variational, this overshooting happened, though the violation

of the variational principle is negligibly small. The RMS (root-mean-square) devia-

tion of the SDM is in the order of 10−3, and is much smaller than the Hartree-Fock

ones. For the doublet states shown in table II, the DE method also reproduces well

the full CI results almost in the same accuracy as for to those of the triplet states.

For the closed-shell singlet states given in table III, the energy and (2)Γ of the DE

method show much better agreement with the full CI ones in comparison with the

triplet and doublet states. It should be noted that the (2)Γ by the DE method is

more accurate than those of the SDCI, since the DE method determines the DM

directly.

The transition energy, ionization energy, and electron affinity are summarized

in table IV for Be, B, C, and N atoms. These quantities are calculated for the first

time by the DE method. Since the states involved are not the normal ground and

excited states, the values themselves may look strange, but in comparison with the

full CI results, the DE results are very close. The deviations of the DE values from

the full CI ones are less than 2.83 × 10−4 au, while those of the Hartree-Fock and

SDCI methods are 4.42× 10−3 and 1.80× 10−5, respectively.

The expectation values of the numbers of α and β spin electrons, 〈Nα〉 and
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TABLE I: Results for the triplet states: total energy (in au), correlation energy error(in

%), and RMS deviation of the (2)Γ calculated by the DE method and the wave function

method. Active space denotes number of occupied MOs × virtural MOs and electrons

denotes number of α electrons + β electrons, respectively.

DE method Wave function method

total energy (correlation energy error in %)

System Active space (2)Γ error a

Electrons State DE Hartree-Fock SDCI full CI

Be 4× 4 3S -13.31466 (-0.2) -13.30361 (100) -13.31464 (0.0) -13.31464

3 + 1 1.43×10−3 2.67×10−2 0 0

B+ 4× 4 3S -23.60534 (-0.2) -23.59233 (100) -23.60532 (0.0) -23.60532

3 + 1 5.21×10−3 2.66×10−2 0 0

C2+ 4× 4 3S -35.30435 (-0.3) -35.29153 (100) -35.304310 (0.0) -35.30431

3 + 1 6.10×10−3 2.14×10−2 0 0

N3+ 4× 4 3S -49.36284 (-0.2) -49.34852 (100) -49.362813 (0.0) -49.36281

3 + 1 4.54×10−3 2.32×10−2 0 0
aSquare norm of the difference between the calculated 2-SDM and full CI one.

TABLE II: Results for the doublet states: total energy (in au), correlation energy error(in

%), and RMS deviation of the (2)Γ calculated by the DE method and the wave function

method. Active space denotes number of occupied MOs × virtural MOs and electrons

denotes number of α electrons + β electrons, respectively.

DE method Wave function method

total energy (correlation energy error in %)

System Active space (2)Γ errora

Electrons State DE Hartree-Fock SDCI full CI

Be− 5× 3 2S -13.24020 (-) - - -13.24016

3 + 2 2.20×10−3 - - 0

B 5× 3 2S -24.11436 (-0.3) -24.09747 (100) -24.11431 (0.0) -24.11431

3 + 2 6.03×10−3 2.28×10−1 3.55×10−5 0

C+ 5× 3 2S -36.55658 (-0.2) -36.54203 (100) -36.55655 (0.0) -36.55655

3 + 2 3.77×10−3 1.24×10−1 1.56×10−5 0

N2+ 5× 3 2S -51.61476 (-0.2) -51.60238 (100) -51.61474 (0.0) -51.61474

3 + 2 2.47×10−3 1.73×10−2 7.71×10−6 0
aSquare norm of the difference between the calculated 2-SDMand full CI one.
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TABLE III: Results for the closed-shell atoms and molecules: total energy (in au), cor-

relation energy error(in %), and RMS deviation of the (2)Γ calculated by the DE method

and the wave function method. Active space denotes number of occupied MOs × virtural

MOs and electrons denotes number of α electrons + β electrons, respectively.

DE method Wave function method

total energy (correlation energy error in %)

System Active space (2)Γ error a

Electrons State DE Hartree-Fock SDCI full CI

Be 4× 4 1S -14.58270 (-0.1) -14.56853 (100) -14.58269 (0.0) -14.58269

2 + 2 4.25×10−5 4.58×10−2 1.06×10−4 0

Be2− 6× 2 1S -11.26839 (0.0) -11.25896 (100) -11.26839 (0.0) -11.26839

3 + 3 1.32×10−5 2.00×10−2 0 0

B+ 4× 4 1S -24.24908 (1.5) -24.23434 (100) -24.24929 (0.1) -24.24931

2 + 2 5.19×10−5 6.03×10−2 5.17×10−4 0

B− 6× 2 1S -23.66908 (-0.2) -23.65664 (100) -23.66905 (0.0) -23.66905

2 + 2 5.83×10−6 2.46×10−2 0 0

C2+ 4× 4 1S -36.41774 (0.1) -36.40382 (100) -36.41775 (0.1) -36.41776

2 + 2 1.47×10−4 3.92×10−2 1.84×10−4 0

N3+ 4× 4 1S -51.08762 (-0.1) -51.07423 (100) -51.08760 (0.1) -51.08761

2 + 2 7.39×10−5 8.25×10−2 7.96×10−5 0

H2O 8× 4 1S -75.72550 (6.9) -75.67885 (100) -75.72821 (1.5) -75.72894

4 + 4 9.22×10−3 2.59×10−1 7.83×10−3 0

HF 8× 2 1S -99.52361 (8.4) -99.49984(100) -99.52577 (0.0) -99.52577

4 + 4 1.32×10−5 2.00×10−2 0 0
aSquare norm of the difference between the calculated 2-SDM and full CI one.
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TABLE IV: Transition energy, ionization energy and electron affinity (in au.)calculated

by the DE method and the wave function method.

System Transition DE Hartree-Fock SDCI Full CI

Be 1S → 3S 1.26804 1.26492 1.26805 1.26805

1S + e− → 2S 1.34249 – – 1.34253

B 2S + e− → 1S 0.44528 0.44083 0.44526 0.44526

2S− e− → 1S -0.13472 -0.13687 -0.13498 -0.13500

B+ 1S → 3S 0.64374 0.64201 0.64397 0.64399

C2+ 1S → 3S 1.11339 1.11229 1.11344 1.11345

1S + e− → 2S -0.13884 -0.13821 -0.13880 -0.13879

N3+ 1S → 3S 1.72478 1.72571 1.72479 1.72480

1S + e− → 2S -0.52714 -0.52815 -0.52714 -0.52713

〈Nβ〉, and those of the operators Sz and S2, 〈Sz〉 and 〈S2〉, are calculated and

summarized in table V for the triplet, doublet, and singlet states. For the closed-

shell singlet state, we obtain almost correct expectation values for atoms, but the

deviations are somewhat large for molecules, especially for 〈S2〉. For the open-shell

triplet and doublet states, the expectation values 〈Nα〉, 〈Nβ〉, 〈Sz〉 and 〈S2〉 slightly

deviate from the exact values. This is because the present approximate decoupling

technique does not include any restrictive conditions for the numbers of the electrons

and spins. When we enforce the “normalization” condition, the present calculations

did not converge or no refinement of the results obtained.

Next, we examine the N -representability conditions for the 1-SDM and 2-SDM.

Table VI gives the occupation numbers of the natural orbital of the 1-SDM, and

the lowest eigen values of the P , Q and G matrices [11]. For the closed-shell sys-

tems, the N -representability condition of the 1-SDM is completely satisfied, i.e.,

the occupation numbers are all positive and less than unity. This was also so in the

previous spin-free calculations[4, 5]. However, violations of the N -representability

of the 1-SDM occur for the open-shell systems. The P , Q and G are necessary

conditions for the N -representability of the 2-SDM: the eigenvalues of the P , Q and

12



TABLE V: 〈Nα〉, 〈Nβ〉, 〈Sz〉 and 〈S2〉 calculated for the 2-SDM by the DE method.

System State 〈Nα〉 〈Nβ〉 〈Sz〉 〈S2〉
Be 3S 3.00072 0.99928 1.00072 2.00003

B+ 3S 2.99741 1.00259 0.99741 2.00237

C2+ 3S 3.00305 0.99694 1.00306 2.00006

N3+ 3S 3.00220 0.99780 1.00220 2.00005

Be− 2S 2.99922 2.00078 0.49922 0.75001

B 2S 3.00161 1.99839 0.50161 0.75000

C+ 2S 3.00113 1.99887 0.50113 0.75000

Be 1S 2.00000 2.00000 0.00000 8.90×10−6

Be2− 1S 3.00000 3.00000 0.00000 4.63×10−7

B+ 1S 2.00004 2.00004 0.00000 4.13×10−4

B− 1S 3.00000 3.00000 0.00000 -1.94×10−6

C2+ 1S 2.00000 2.00000 0.00000 3.87×10−5

N3+ 1S 2.00000 2.00000 0.00000 4.74×10−6

H2O
1S 5.00002 5.00002 0.00000 1.28×10−2

HF 1S 5.00002 5.00002 0.00000 1.03×10−2
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TABLE VI: Minimum eigenvalues of the P , Q and G-matrices, numbers of the

eigenvalues smaller than 1.0×10−6 in the parenthesis, and the range of eigen values

of 1-SDM calculated by the DE method.

Active

System electrons P -matrix Q-matrix G-matrix 1-SDM

Be(3S) 4 -6.545×10−4(7) -6.688×10−4(7) -7.047×10−4(17) -3.536×10−4 ∼ 1.0004

B+ (3S) 4 -1.815×10−4(4) -1.896×10−4(3) -1.937×10−4(11) 3.067×10−4 ∼ 0.9997

C2+ (3S) 4 -3.009×10−3(8) -3.015×10−3(9) -3.132×10−3(24) -1.548×10−3 ∼ 1.0016

N3+ (3S) 4 -2.237×10−3(7) -2.242×10−3(7) -2.235×10−5(23) 1.154×10−3 ∼ 1.0012

Be− (2S) 5 -4.952×10−6(1) -6.809×10−6(8) -7.965×10−6(6) 2.659×10−4 ∼ 1.0000

B (2S) 5 -2.123×10−3(6) -2.121×10−4(10) -4.233×10−4(23) -2.102×10−4 ∼ 1.0021

C+ (2S) 5 -1.331×10−3(5) -3.015×10−3(7) -3.132×10−3(18) -1.316×10−3 ∼ 1.0000

N2+ (2S) 5 -1.555×10−5(2) -1.396×10−4(10) -2.928×10−4(14) -1.154×10−3 ∼ 1.0012

Be(1S) 4 -6.246×10−6(1) -3.938×10−6(2) -4.781×10−6(4) 1.119×10−4 ∼ 0.9997

Be2− (1S) 6 ok -3.045×10−6(5) -4.576×10−6(6) 1.996×10−4 ∼ 1.00000

B+ (1S) 4 -6.963×10−6(4) -1.563×10−5(5) -4.576×10−6(12) 1.996×10−4 ∼ 1.0000

B− (1S) 6 ok -1.417×10−4(4) -1.986×10−4(6) 3.009×10−4 ∼ 1.0000

C2+ (1S) 4 -3.818×10−5(5) -2.019×10−6(1) -1.998×10−5(7) 5.863×10−4 ∼ 0.9998

N3+ (1S) 4 -1.922×10−5(2) ok -1.111×10−5(7) 1.168×10−1 ∼ 0.9999

H2O(1S) 8 -6.793×10−4(2) -4.830×10−4(18) -6.606×10−4(5) 1.427×10−2 ∼ 0.9987

HF(1S) 8 -8.303×10−4(1) -7.688×10−4(14) -1.221×10−3(5) 1.696×10−2 ∼ 0.9994
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TABLE VII: Second moment (〈r2〉) of atoms calculated by the DE method and the

wave function method.

System state DE Hartree Fock SDCI full CI

Be 3S -4.85006 -4.85021 -4.85006 -4.85006

B+ 3S -4.95063 -4.95074 -4.95070 -4.95070

C2+ 3S -3.27401 -3.27404 -3.27402 -3.27402

N3+ 3S -2.33906 -2.33908 -2.33906 -2.33906

Be− 2S -7.33125 – -7.33128 -7.33128

B 2S -6.45884 -6.45765 -6.45889 -6.45892

C+ 2S -4.08158 -4.08119 -4.08159 -4.08160

N2+ 2S -2.84906 -2.84892 -2.84907 -2.84907

Be 1S -5.77125 -5.77782 -5.77136 -5.77127

Be2− 1S -9.56353 -9.56389 – -9.56355

B+ 1S -2.71924 -2.69894 -2.71849 -2.71887

B− 1S -9.81236 -9.81253 – -9.81237

C2+ 1S -1.56149 -1.55544 -1.56144 -1.56152

N3+ 1S -1.02144 -1.01932 -1.02143 -1.02145

G matrices should be non-negative. However, some of the eigenvalues are slightly

negative, though the numbers of the negative eigenvalues are very small among the

total numbers of the eigenvalues. The violations of the N -representability of the

2-SDM seems to be small. This violation becomes large as the number of the elec-

tron increases, and seems to be larger for the open-shell systems compared with the

closed-shell systems.

Table VII shows the second moment of electron distribution, 〈r2〉. Again, the DE

results for the closed-shell systems are better than those for the open-shell systems.

Some of them are better than the SDCI results, because the DE method directly

determines the SDM. For the open-shell systems, the SDCI results are superior to

15



the DE ones, because the violation of the N -representability condition tends to

accumulate electrons near the nucleus. Some of the SDCI results are identical to

the full CI results: for the active space is small, the single and double excitations

span the complete space.

Finally, the spin density and the electron density at nucleus are calculated. In

table VIII, IX and X, the results are shown for the triplet, doublet, and singlet

states, respectively. The spin density at the nucleus is a very important observable

in ESR and other magnetic chemistry and calculated for the first time by the DE

method. The DE method well reproduces the spin density at the nucleus of the

full CI method. The results are almost in the same accuracy as the SDCI ones

and much better than the Hartree-Fock ones, since the DE method includes both

electron and spin correlations up to second-order in the perturbation. For the

closed-shell singlet states, the spin density is exactly zero, therefore, only the total

density of the electrons at nucleus is given. The accuracy of the DE method is

almost the same as that of SDCI.
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TABLE VIII: Electron density and spin density at the nucleus of the triplet state. ρ

denotes the total electron density, and ρα and ρβ are the α and β electron densities,

respectively, and ∆ρ = ρα − ρβ is spin density at the nucleus.

System(State) 2-DE Hartree Fock SDCI full CI

Be (3S)

ρ 32.530 32.401 32.530 32.530

ρα 18.069 17.593 18.068 18.068

ρβ 14.461 14.808 14.462 14.462

∆ρ 3.608 2.785 3.605 3.605

B+(3S)

ρ 68.741 68.680 68.742 68.742

ρα 36.216 35.947 36.225 36.225

ρβ 32.525 32.733 32.517 32.517

∆ρ 3.691 3.215 3.708 3.708

C2+(3S)

ρ 122.143 122.064 122.143 122.143

ρα 64.502 64.083 64.489 64.489

ρβ 57.641 57.981 57.654 57.654

∆ρ 6.860 6.103 6.836 6.836

N3+(3S)

ρ 197.798 197.705 197.798 197.798

ρα 104.557 103.989 104.543 104.543

ρβ 93.241 93.716 93.255 93.255

∆ρ 11.316 10.273 11.287 11.287
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TABLE IX: Electron density and spin density at the nucleus of the doublet state.

ρ is the total electron density, and ρα and ρβ are the α and β electron densities,

respectively, and ∆ρ = ρα − ρβ is the spin density at the nucleus.

System(State) DE Hartree Fock SDCI full CI

Be−(2S)

ρ 33.568 – 33.568 33.568

ρα 17.909 – 17.911 17.911

ρβ 15.659 – 15.658 15.658

∆ρ 2.249 – 2.253 2.253

B(2S)

ρ 70.058 69.998 70.058 70.058

ρα 35.980 35.796 35.977 35.977

ρβ 34.078 34.202 34.081 34.081

∆ρ 1.902 1.594 1.896 1.896

C+(2S)

ρ 125.313 125.238 125.313 125.313

ρα 64.033 63.809 64.030 64.030

ρβ 61.280 61.429 61.284 61.283

∆ρ 2.753 2.380 2.746 2.746

N2+(2S)

ρ 203.820 203.732 203.820 203.820

ρα 103.832 103.564 103.828 103.828

ρβ 99.989 100.168 99.992 99.992

∆ρ 3.843 3.396 3.836 3.836
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TABLE X: Electron density at the nucleus of the singlet state.

System(State) DE Hartree Fock SDCI full CI

Be(1S) 31.489 31.352 31.489 31.489

Be2−(1S) 34.316 34.209 34.316 34.316

B+(1S) 69.030 68.983 69.031 69.031

B−(1S) 71.456 71.399 71.457 71.457

C2+(1S) 123.532 123.470 123.532 123.532

N3+(1S) 201.055 200.978 201.055 201.055

1.5 Conclusion

We successfully calculated the SDMs of some open-shell and excited states for the

first time by the spin-explicit DE method without any use of the wave function.

The same method is also applied to the closed-shell systems, though the solution is

easier with the spin-free formulation. Generally speaking, the quality of solutions

were better for the closed-shell systems than for the open-shell systems. A reason is

a lager number of valuables to be solved for open-shell systems. Another one may be

a symmetry which may hide some N -representability condition; all the electrons are

in pair. As seen from the results, the present method and the solution algorithm are

not complete and needs some future refinement. Nonetheless, the present results

constitutes a mile stone in the DE approach in theoretical chemistry as its first

application to open-shell and excited states.
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Chapter 2.

Direct determination of the density matrix using

the density equation: Potential energy curves of

HF, CH4, BH3, NH3, and H2O

Abstract

The density equation (DE) method was utilized for calculations of the potential

energy curves of molecules HF, CH4, BH3, NH3, and H2O. The equilibrium ge-

ometries and the vibrational force constants of these molecules were determined

for the first time by the DE method without any use of the wave function. The

calculated values are in close agreement with the results of the symmetry-adapted

cluster (SAC) and full-CI methods.
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2.1 Introduction

Recently, a revival of interest has been invoked on the direct determination of the

density matrix (DM) without any use of the wave function [1-12]. The density

matrix approach is straightforward in comparison with the wave function approach

since all the elemental physical quantities can be calculated using sec ond-order den-

sity matrices (2-DMs). The basic equation for the DMs exists in an explicit form [1],

in contrast to the Hohenberg-Kohn’s existing theorem [13] in the density functional

approach [14]. Nakatsuji derived in 1976 a basic equation, called density equation

(DE), for a direct determination of the DM[1]. Recently, time-dependent DE and

the perturbation theory for both time-independent and time-dependent DE were

published [2]. He showed that the DE is equivalent with the Schröinger equation (by

the necessary and sufficient condition)in the domain of the N -representable DM’s.

Unfortunately, the N -representability condit ion on the DM is still not completely

known [15], and under such situation, the nth-order DE, containing nth, (n + 1)th,

and (n+2)th-order DM’s is formally insoluble, for the number of the unknown vari-

ables exceeds the number of the conditions. Valdemoro and co-workers reported an

interesting approach for solving the density equation [6-12]. (They called the DE

contracted Schröinger equation, but this naming does well represent the sufficiency

nature of the DE, which is a primary feature of the DE.) They suggested a de-

coupling approximation of higher-order reduced density matrices (RDM’s) in terms

of the lower-order ones based on the fermion’s anticommutation relation. We call

this approximation the IPH approximation (the approximation identifying inde-

pendently the particle and hole parts separately). Nakatsuji and Yasuda proposed

a more accurate decoupling approximation on the basis of the Green’s-function

method [3, 4]. It was called DE2 method since the approximation is correct essen-

tially to the second-order in the correlation perturbation. The method was applied

to the calculations of the second-order RDMs of Be, Ne, H2O, NH3, H3O
+, CH4,

BH−
4 , NH+

4 , CH3F, HF, N2, CO, C2H2, CH3OH, CH3NH2, and C2H6 [3, 4].

The RDMs of molecules were determined directly, for the first time, without

any use of wave functions. Recently, the method has been reformulated for spin-
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dependent DMs and has been applied to some open-shell systems [5]. Mazziotti

[11, 12] reported recently a fresh reformulation of the DE method and applied it to

the Lipkin model.

In this paper, the DE2 method is applied to the calculations of the potential

energy curves of some small molecules. We want to calculate their equilibrium

geometries and force constants for the first time by the DE method.

2.2 Computational method

The DE2 method proposed in previous papers [3,4] is applied to the calculations of

the potential curves of HF, CH4, BH3, NH3, and H2O. The calculational procedure

was discussed in detail elsewhere [4]. We did not include the term given by Eq.

(2.24) of Ref. [4]. The multidimensional nonlinear equation was solved by Newton’s

method. The Hermiticity and the symmetry properties of the 2-RDM were imposed

in solving the DE.

The valence double zeta basis, [3s2p/2s] set [16,17], was used for HF and the

minimal STO-6G basis [18] was used for CH4, BH3, NH3, and H2O. The potential

energy curves of HF, CH4, BH3, and NH3 were calculated for the totally-symmetric

stretching mode. The potential energy surface of H2O was calculated along the

three normal modes around the equilibrium geometry. The spectroscopic constants

of the potential curves were calculated numerically. The full-CI and symmetry-

adapted-cluster (SAC) [19] methods were performed, at the same time, to examine

the accuracy of the present DE2 results. The HONDO8 program [20] was used for

the Hartree-Fock and full-CI calculations and the SAC-CI96 program [21] for SAC

calculations.

In all calculations, the 1s orbitals of the first-row atoms were frozen as cores.

This was effective to get a good convergence in the present algorithm of solving the

DE. When these 1s orbitals were included, the breakdown of the N -representability

of the 1-RDM occurred even at the geometries relatively close to the equilibrium

geometry. The origin of this non-convergence is not clear, but we have observed that

the occupation number of the 1s orbitals slightly exceeds two, when the molecular
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geometry is apart from the equilibrium geometry. By adopting the 1s orbitals as

a frozen core, the present DE2 calculations have converged in wide regions around

the equilibrium geometry.

2.3 Stretching potential for HF, CH4, BH3, and NH3

Fig. 1a shows a comparison of the ground-state potential energy curves of HF

molecule calculated by the Hartree-Fock, DE2, SAC, and full-CI methods in the

nuclear distance of 0.8 - 1.2 Å. The DE2 method well reproduces the full-CI curve,

showing that the DE2 method includes electron correlations very accurately: the

errors range from 4.1% to 9.2% in these internuclear distances. The deviations

from the full-CI are larger in the large internuclear distance, while a weight of the

Hartree-Fock configuration is almost constant, 0.96 - 0.95, in the distance of 0.8 -

1.2 Å. The SAC almost reproduces the full-CI curve: the deviations are within 1.8

mhartree.

The potential curves for the totally-symmetric stretching mode of CH4 are shown

in Fig. 1b. Again, the DE2 method simulates well the full-CI curve: for CH4, the

errors in the correlation energy are 3.3% to 13.1% in the range of RC−H = 0.95

- 1.40Å, where the weight of the Hartree-Fock configuration changes from 0.97 to

0.88, the last figure being very small. Since the present DE2 method is based on the

perturbation expansion by the Green function method [3,4], a better agreement is

obtained at a shorter internuclear distance where the Hartree-Fock approximation

becomes better. The SAC curve is almost superposed with the full-CI one. The

DE2 method is correct to the second-order in the correlation perturbation, but still

is a subject of improvement and at this moment, it is more expensive than the

wavefunction approach like SAC.

The potential curves of BH3 and NH3 are depicted in Fig. 2 for the totally-

symmetric stretching mode. The stretching potential of BH3 was obtained by re-

stricting the planer structure of D3h, while for NH3 the geometry was optimized

along the mode by each method. The weight of the Hartree-Fock configuration is

0.98 - 0.93 for RB−H = 1.0 - 1.45Å of BH3 and 0.97 - 0.93 for RN−H = 0.948 - 1.185Å
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TABLE I: The equiliburium length Re and totally-symmetric harmonic vibrational fre-

quency ωe caluclated for HF, CH4, and BH3

Re(Å) ωe(cm−1)

HFa

Hartree-Fock 0.9195 4233

DE2 0.9416 3969

SAC 0.9487 3826

Full-CI 0.9495 3808

CH4

Hartree-Fock 1.0783 3535

DE2 1.0998 3306

SAC 1.1035 3245

Full-CI 1.1038 3240

BH3

Hartree-Fock 1.1539 3114

DE2 1.1743 2929

SAC 1.1774 2879

Full-CI 1.1778 3884
a Experimental values are Re = 0.9168Å and ωe = 4138[22].

b Experimental values are Re = 1.0936Å[23] and ωe = 2915[24].

of NH3. The DE2 method describes 96.7 - 89.0% of the electron correlations of BH3

and 92.6 - 89.8% for NH3, though the geometry of NH3 is different for each method.

The spectroscopic constants were numerically evaluated from the potential en-

ergy curves of the Hartree-Fock, DE2, SAC, and full-CI methods is shown in table

I. The equilibrium distance Re and the harmonic vibrational frequency armonic vi-

brational frequency of the DE2 method is much closer to the full-CI result than to

the Hartree-Fock result. The SAC and full-CI results are almost the same.

It is important to examine not only the energy but also the details of the density.

Fig. 3 shows the dipole moment of HF along the internulcear distance calculated

by the Hartree-Fock, DE2, and full-CI methods. The DE2 method reproduces well

the full-CI result, which is reasonable since the DE2 method directly calculates the
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TABLE II: Optimized geometry and vibrational frequency of the totally symmetric

stretching mode of NH3

Hartree-Fock DE2 SAC Full-CI

Optimized geometrya

rNH(Å) 1.0281 1.0580 1.0662 1.0664

θHNH 104.46 101.07 100.28 100.29

Vibrational frequencyb

ν1(a1)(cm−1) 3832 3496 3358 3350

a Experimental values are rNH = 1.0116Å and θHNH = 106.68[23]
b Experimental value is ν1(a1) = 3336cm−1[24].

density matrix.

In the present DE2 calculation, the N -representability condition for the 1-RDM

was satisfied for all the calculated geometries shown here: the eigenvalues of the

1-RDM, i.e., the occupation numbers, were all positive and less than two. As for the

2-RDM, the P , Q, and G conditions [3,4] for the N -representability were examined.

Fig. 4 shows the lowest value and the sums of the negative eigenvalues of the P , Q,

and G matrix of CH4 along the internulcear distances shown in Fig. 1b. These values

should be non-negative for the N -representative 2-RDM, but the lowest values are

slightly negative from−1×10−4 at R = 0.95Å to−6×10−3 at R = 1.4Å. It should be

noted that only 3 to 7 eigenvalues are negative out of the 336 independent variables

and the sums of the negative values range from −3 × 10−4 to −1.6 × 10−2. The

calculated 2-RDM are not completely N -representable, but the deviation seems to

be small. These conditions are satisfied better in shorter internulcear distances, as

expected from the weight of the Hartree-Fock configuration.

We note here that in larger internuclear distances than those shown in this

paper, where the Hartree-Fock approximation becomes worse, the DE2 equation was

rather unstable and sometimes failed to converge. When we examine the occupation
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TABLE III: Optimized geometry and vibrational frequencies cm−1 for the ν1(a1),

ν2(a1), ν3(b2) modes of H2O

Hartree-Fock DE2 SAC Full-CI

Optimized geometrya

rOH (Å) 0.9862 1.0146 1.0262 1.0264

θHOH 100.01 97.47 96.68 96.68

Vibrational frequencyb

ν1(a1) 4102 3761 3515 3512

ν2(a1) 2162 2078 2031 2027

ν3(a2) 4352 4001 3758 3756

a Experimental values are rOH = 0.9575Å and θHOH = 104.51[23]
b Experimental value is ν1(a1) = 3657cm−1, ν2(a1) = 1595cm−1,

ν3(b2) = 3756cm−1 [24].

numbers of the 1-RDM at such a geometry, some of them were negative showing

that the N -representability condition was broken. This behavior of the DE implies

that it is stable only for the N -representable or almost N -representable DMs.

2.4 Full vibrational potential of H2O

Finally, the DE2 method was used to calculate the potential energy surface of the

ground state of H2O along the normal modes, v1(a1), v2(a1), and v3(b1), totally-

symmetric stretching, bending, and anti-symmetric stretching modes, respectively.

Fig. 5 compares the potential energy curves along these three modes around the

equilibrium geometry determined by each method. The error in the electron corre-

lation energy is relatively large for H2O in comparison with other molecules. The

errors were from 10.0 to 15.9% in the geometries examined here, although the weight

of the Hartree-Fock configuration was as large as 0.95− 0.97. The vibrational anal-

ysis was performed for these three modes and the results are given in Table III
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together with the optimized geometry. The DE2 method well reproduces the equi-

librium geometry. The vibrational frequencies calculated by the DE2 method are

closer to the full-CI values than to the Hartree-Fock ones.

2.5 Conclusion

The density equation method has been applied sucessfully, for the first time, to the

calculations of the potential energy curves, equilibrium geometries, and vibrational

force constants of molecules without using the wave functions. The results for HF,

CH4, BH3, NH3, and H2O reproduced well the SAC and full-CI results. It was

effective in the present algorithm to adopt the 1s orbital of the first-row atoms as

frozen core. The resultant density matrices were almost N -representable, in the

region reported in this paper.

A note may be necessary about the Hartree-Fock method. When we introduce

independent particle approximation, we can derive Hartree-Fock equation from the

density equation as shown in Ref. [1]. In other words, the Hartree-Fock equation is

a kind of the density equation. We used the Hartree-Fock orbital which is obtained

by diagonalizing the first-order density matrix, as reference functions in the second-

quantized formulation. So, we never used any wave function.
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Part II.

Density matrix variational theory





Chapter 3.

Variational calculations of fermion second-order

reduced density matrices by semidefinite

programming algorithm

Abstract

The ground-state fermion second-order reduced density matrix (2-RDM) is deter-

mined variationally using itself as a basic variable. As necessary conditions of

the N -representability, we used the positive semidefiniteness conditions, P , Q and

G conditions that are described in terms of the 2-RDM. The variational calcula-

tions are performed by using recently developed semidefinite programming algo-

rithm (SDPA). The calculated energies of various closed- and open-shell atoms and

molecules are excellent, overshooting only slightly the full-CI energies. There was no

case where convergence was not achieved. The calculated properties also reproduce

well the full-CI results.
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3.1 Introduction

The ground state of N -body fermion system is completely described by the second-

order reduced density matrix (2-RDM) Γ(2) because any observable properties of

the system can be calculated from the 2-RDM [1, 2]. This fact led us to desire to

use 2-RDM as a basic variable of quantum mechanics instead of the wave function

Ψ: if we can determine Γ(2) without using Ψ, we have a closed form of quantum me-

chanics where the basic variable is 2-RDM. We refer to such formalism of quantum

mechanics as density matrix theory (DMT)[3].

In non-relativistic case, the determinative equation for Ψ is the Schrödinger

equation (SE). Therefore, to establish DMT, we have to formulate the equation for

the RDM that is equivalent to the SE in the necessary and sufficient sense[3]. As

such a equation, one of the author derived density equation (DE)[4, 5] that has

recently been used successfully to calculate the 2-RDMs of atoms and molecules

directly without any use of the wavefunction[6, 7, 8, 9]. This approach is called

density equation theory (DET) and a review on the DET in chemical physics has

recently been summarized together with some later developments[3].

Another equation that is equivalent to the SE but includes 2-RDM alone as a

variable is the variational equation of the form

Eg ≤ E[Γ(2)] (3.1)

where Eg is the exact ground-state energy. This method called density matrix

variational theory (DMVT) is a straightforward consequence of the Ritz variational

principle combined with the fact that the Hamiltonian involves only one- and two-

body operators. The problem here is how well we can restrict our variable Γ(2) to

be N -representable[10]. The N -representability condition that is enforced by the

Pauli principle is not completely known for Γ(2) and this is an obstacle of the DMT

in general.

The P , Q[10] and G[11] conditions are the well-known necessary conditions of

the N -representability. They are the semidefiniteness conditions of the matrices

derived from Γ(2). Though these three conditions are not complete, they seem to

be quite strong to characterize the N -representability of the ground-state 2-RDM.
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First calculations along this line were performed in a beautiful way by Garrod et al.

[12, 13] for the ground state of Be, and Mihailović et al. [14] for the nuclear ground

state of 15O,16 O,17 O,18 O,20 Ne,24 Mg and 28Si. At that time their method was very

heuristic and hardly be applied to general systems. We found that this method can

be elegantly realized using the semidefinite programming algorithm (SDPA)[15],

recently developed in the field of mathematical programming. We calculated the

ground-state energies of atoms and molecules using these three necessary conditions

and employing SDPA as our problem solver.

3.2 Theorical outline

First and second order reduced density matrices (1-, 2-RDMs), γ and Γ, respectively,

are defined by

γi
j = 〈Ψ|a†iaj|Ψ〉, (3.2)

and

Γi1i2
j1j2 =

1

2
〈Ψ|a†i1a†i2aj2aj1|Ψ〉, (3.3)

where a† and a denote creation and annihilation operators, respectively. Note we

have simplified Γ(2) as Γ. Throughout this paper, we assume the elements of 1-RDM

and 2-RDM to be real. Complete N -representability condition is known for γ[10],

but for Γ, we know only necessary conditions (the known complete condition is not

practical). Some trivial conditions for 2-RDM are:

1. Antisymmetric condition

Γi1i2
j1j2 = −Γi2i1

j1j2 = −Γi1i2
j2j1 (3.4)

2. Hermiticity

Γi1i2
j1j2 = Γj1j2

i1i2 (3.5)

3. trace condition
∑

k

Γik
jk =

2

N − 1
γi

j (3.6)
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4. number of electrons

N =
∑

k

γk
k (3.7)

5. eigenstate of the number of α (or β) electrons

trNαΓ = Nα and trN2
αΓ = N2

α (3.8)

where the operators of Nα and N2
α are written as:

Nα =
∑

i

a†iαaiα

N2
α =

∑

ij

a†iαaiαa†jαajα (3.9)

6. spin symmetry

Γi1σ1i2σ2

j1σ′1j2σ′2
= 0 (3.10)

when σ1 6= σ′1 or σ2 6= σ′2 and σ1 6= σ′2 or σ2 6= σ′1, where σ denotes spin

variable.

7. expectation value of S2

trS2Γ = S(S + 1) (3.11)

where the spin-squared operator S2 is given by

S2 = Sz + S2
z + S−S+

=
1

2

∑

i

(
a†iαaiα − a†iβaiβ

)
+

1

4

(∑

i

a†iαaiα − a†iβaiβ

)2

+
∑

ij

a†iβaiαa†jαajβ (3.12)

8. positive semidefiniteness of P matrix, which is just 2-RDM

∑
xi1i2Γ

i1i2
j1j2xj1j2 ≥ 0 (3.13)

where xi1i2 is an arbitrary geminal.

Note that except for the condition 8, all of these conditions are linear to 2-RDM.

The Q and G matrices are defined by

Qi1i2
j1j2 = 〈Ψ|ai1ai2a

†
j2a

†
j1|Ψ〉 (3.14)
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and

Gi1i2
j1j2 = 〈Ψ|a†i1ai2a

†
j2aj1|Ψ〉. (3.15)

These matrices are semidefinite[11] and linear to Γ as

Qi1i2
j1j2 = (δi1

j1δ
i2
j2 − δi1

j2δ
i2
j1)− (δi1

j1γ
i2
j2 + δi2

j2γ
i1
j1) + (δi1

j2γ
i2
j1 + δi2

j1γ
i1
j2)− 2Γi1i2

j1j2 (3.16)

and

Gi1i2
j1j2 = δi2

j2γ
i1
j1 − 2Γi1j2

j1i2 . (3.17)

We note that originally the G matrix was written in an equivalent nonlinear form[16].

The Hamiltonian of the system can be written as,

H i1i2
j1j2 = wi1i2

j1j2 +
1

N − 1
(vi1

j1δ
i2
j2 + vi1

j2δ
i2
j1). (3.18)

where v and w are 1- and 2-body operators, respectively. Then, the basic equation

of DMVT given by Eq.(3.1) is written as the variational minimization of the energy

within our constraints,

Emin = Min
Γ∈(2)P

TrHΓ (3.19)

where (2)P is the set of 2-RDMs which satisfies the above necessary N -representability

conditions, namely,

(2)P = {Γ|P , Q, G matrices are non-negative and the conditions 1 ∼ 7 are satisfied}.
(3.20)

Either of the P , Q and G conditions forms compact convex set with trace topology[17],

and a finite combination of compact convex sets is also compact convex set, there-

fore this method should find a minimum in energy. This method can be applied to

the ground state of any space and spin symmetry.

3.3 Calculation method

The minimization problem with some linear constraints can be achieved by using

semidefinite programming algorithm(SDPA)[15] as a problem solver. The SDPA has

recently been developed in the field of mathematical programming. In this section,
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we explain how to apply SDPA to our problem of solving Γ(2) in the constrained

variational method given by Eq.(3.19). The dimensions of the matrices are n × n,

if they are not explicitly defined.

3.3.1 Simplified problem

First, we introduce a simplified problem which contains all the essentials, that is

Problem(a): Minimize the total energy of the 2-RDM Γ subject to the

fixed number of electrons and the positive semidefiniteness of Γ.

The positive semidefiniteness of Γ is the P condition. Note that this problem gives

the exact solution for N = 2. Problem (a) is written as,

Problem(a′):





Minimize TrHΓ

subject to TrNΓ = N

and Γ is positive semidefinite.

(3.21)

Formal expression of the problem[15] is,

Problem(a′′):





Minimize F 0 • Y

subject to F 1 • Y = c1

and Y is positive semidefinite

(3.22)

where F 0 and F 1 are constant n×n symmetric matrices, and Y is n×n symmetric

variable matrix, c1 is real constant, and • is an operator such that

F • Y =
∑

i,j

(F )ij(Y )ij. (3.23)

One can easily confirm that problem (a′) and problem (a′′) are the same when we

take Y as Γ, F 0 as Hamiltonian, and F 1 as number of operator. A generalization

of the problem (a′′) is called semidefinite programming(SDP).
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3.3.2 Semidefinite programming algorithm(SDPA)

The SDPA[15] solves the following form of semidefinite programming and its dual,

SDP





primal : minimize
m∑

i=1

cixi

subject to X =
m∑

i=1

F ixi − F 0, Xº 0

dual : maximize F 0 • Y

subject to F i • Y = ci (1 ≤ i ≤ m), Y º 0

(3.24)

where X and Y are n × n real symmetric matrices, F i, (1 ≤ i ≤ m) symmetric

constraint matrices, ci and xi real constant and variable numbers, respectively, U•V
denotes inner product of the matrices, U • V =

∑
i,j U i,jV i,j, and X º 0 means

X to be positive semidefinite. We assume all the constraint matrices are linearly

independent.

Semidefinite programming is usually solved by primal-dual interior-point method[18,

19]. This method is based on the primal-dual theorem of SDP, which shows an ex-

istence of the optimal solution and gives a necessary and sufficient condition for the

optimal solution (minimum in primal problem, and maximum in dual problem): if

there exists (X,Y ,x) such that they satisfy all the constraints and X º 0 and

Y º 0, then

1. SDP has optimal solution.

2. Necessary and sufficient condition for the optimal solution (X∗,Y ∗,x∗) is

X∗ • Y ∗ = F 0 • Y ∗ −
m∑

i=1

cix
∗
i = 0. (3.25)

3.3.3 Set up of DMVT in SDPA

Our object is to solve the DMVT problem(3.19). It is equivalent to solve the dual

of the problem(3.24), taking Y as 2-RDM, F 0 as Hamiltonian, F 1 as the constraint

for the number of electrons, F 2 as the constraint for spin squared operator, etc.

Maximization is altered to minimization by just changing the sign of F 0. The
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problem(3.19) is written as:




Minimize TrHΓ

subjected to TrNΓ = N

TrS2Γ = S(S + 1)

TrNαΓ = Nα

TrN2
αΓ = N2

α

and Γ(2) º 0, Q º 0 and G º 0.

(3.26)

Note that some of the matrices appeared below have four indices, however, we

can reduce them to two indices by mapping indices (i, j) to the composite index

k. Imposing linear constraints for N or S2 etc. is straightforward. Constraining

the expectation value of the two body operator A to be ca(TrAΓ = ca) is done as

follows,

1. Explicit expression of A is give by,

A =
∑

i1i2j1j2

ai1i2
j1j2a

†
i1a

†
i2aj2aj1 , (3.27)

where ai1i2
j1j2 is constant.

2. Set up the constraint matrix F A such that

(F A)i1i2
j1j2 = ai1i2

j1j2 . (3.28)

3. Then, the constraint is given by the equality:

F A • Γ =
∑

i1i2j1j2

ai1i2
j1j2Y

i1i2
j1j2

= TrAΓ

= ca. (3.29)

For example, we set up the constraint matrix for the number of particles N .

Explicit expression of N is,

N =
∑

i

a†iai

=
N − 1

2

∑

ij

a†ia
†
jajai. (3.30)
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Then, the constraint matrix F N for the number of particle is represented by

(F N)ij
kl =

N − 1

2
δikδjl, (3.31)

and we confirm the following relation,

F N • Y =
∑

ijkl

(F N)ij
klΓ

ij
kl

=
∑

ijkl

N − 1

2
δikδjlΓ

ij
kl

=
N − 1

2

∑

ij

Γij
ij

=
N − 1

2

∑

i

2

N − 1
γi

i

=
∑

i

γi
i

= N. (3.32)

Now we consider how to enforce the 2-RDM to satisfy the P , Q, and G condi-

tions, simultaneously. We first explain the case where only P and Q conditions are

enforced simultaneously.

We introduce the variable matrix Y in which P and Q matrices are diagonally

arranged,

Y =




P 0

0 Q


 . (3.33)

It is obvious that

Y º 0 ↔ P º 0 and Q º 0. (3.34)

There is a linear relation between Γ and Q matrices:

Qi1i2
j1j2 = (δi1

j1δ
i2
j2 − δi1

j2δ
i2
j1)−

∑

k

N − 1

2
(δi1

j1Γ
i2k
j2k + δi2

j2Γ
i1k
j1k)

+
∑

k

N − 1

2
(δi1

j2Γ
i2k
j1k + δi2

j1Γ
i1k
j2k)− 2Γi1i2

j1j2 . (3.35)

Therefore, we can find a set of linear constraints for each element of the Q matrix

as

Ei1i2
j1j2

• Y = ci1i2
j1j2
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= 2Γi1i2
j1j2 + (δi1

j1γ
i2
j2 + δi2

j2γ
i1
j1)− (δi1

j2γ
i2
j1 + δi2

j1γ
i1
j2) + Qi1i2

j1j2

= δi1
j1δ

i2
j2 − δi1

j2δ
i2
j1 . (3.36)

Using these constraints, the SDP formalism is given by:





Minimize H • Y

subject to F i • Y = ci

Ẽ
i1i2
j1j2

• Y = δi1
j1δ

i2
j2 − δi1

j2δ
i2
j1

(3.37)

where Ẽ
i1i2
j1j2

is a symmetric matrix defined by:

Ẽ
i1i2
j1j2

=
1

2

(
Ei1i2

j1j2
+ Ej1j2

i1i2

)
, (3.38)

and the explicit expression of the element of the constraint matrix, (Ei1i2
j1j2

)k1k2
l1l2

is

given by

(Ei1i2
j1j2

)k1k2
l1l2

= 2δi1
k1

δi2
k2

δj1
l1

δj2
l2

+ δi1+n
k1

δi2+n
k2

δj1+n
l1

δj2+n
l2

+
N − 1

2
δi1
j1δ

i2
k1

δj2
l1

δk2
l2

+
N − 1

2
δi2
j2δ

i1
k1

δj1
l1

δk2
l2

−N − 1

2
δi1
j2δ

i2
k1

δj1
l1

δk2
l2
− N − 1

2
δi2
j1δ

i1
k1

δj2
l1

δk2
l2

(3.39)

and the constant ci1i2
j1j2 in Eq.(3.36) is

ci1i2
j1j2 = δi1

j1δ
i2
j2 − δi1

j2δ
i2
j1 , (3.40)

We can confirm Eq.(3.41) holds

Ei1i2
j1j2

• Y =
∑

k1k2l1l2

(Ei1i2
j1j2

)k1k2
l1l2

(Y )k1k2
l1l2

= ci1i2
j1j2 (3.41)

as follows. The first two terms of Eq.(3.41) are

∑

k1k2l1l2

(2δi1
k1

δi2
k2

δj1
l1

δj2
l2

+ δi1+n
k1

δi2+n
k2

δj1+n
l1

δj2+n
l2

)(Y )k1k2
l1l2

= 2(Y )i1i2
j1j2 + (Y )i1+n,i2+n

j1+n,j2+n

= 2Γi1i2
j1j2 + Qi1i2

j1j2 , (3.42)
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the second two terms of Eq.(3.41) give,

∑

k1k2l1l2

(
N − 1

2
δi1
j1δ

i2
k1

δj2
l1

δk2
l2

+
N − 1

2
δi2
j2δ

i1
k1

δj1
l1

δk2
l2

)
(Y )k1k2

l1l2

=
N − 1

2

∑

k

δi1
j1Γ

i2k
j2k +

N − 1

2

∑

k

δi2
j2Γ

i1k
j1k

= δi1
j1γ

i2
j2 + δi2

j2γ
i1
j1 , (3.43)

and the last term gives

∑

k1k2l1l2

(
−N − 1

2
δj2
i1 δi2

k1
δj1
l1

δk2
l2
− N − 1

2
δj1
i2 δi1

k1
δj2
l1

δk2
l2

)
(Y )k1k2

l1l2

= −N − 1

2

∑

k

δj2
i1 Γi2k

j1k −
N − 1

2

∑

k

δj1
i2 Γi1k

j2k

= −δi1
j2γ

i2
j1 − δi2

j1γ
i1
j2 . (3.44)

Combining Eq.(3.42)∼ Eq.(3.44), we get Eq.(3.36).

Constraining P , Q and G matrices to be positive semidefinite is done in es-

sentially the same way as above. In this case, the variable matrix Y is defined

as:

Y =




P 0 0

0 Q 0

0 0 G




. (3.45)

We have a linear relation between Γ and G:

Gi1i2
j1j2 = δi2

j2

∑

k

N − 1

2
Γi1k

j1k − 2Γi1j2
j1i2 , (3.46)

which is described by a set of linear constraints J i1i2
j1j2

for each element of G matrix

as

J i1i2
j1j2

• Y = 0

= −δi2
j2γ

i1
j1 + 2Γi1j2

j1i2 + Gi1j2
j1i2 , (3.47)

and an explicit expression of the constraint matrix (J i1i2
j1j2

)k1k2
l1l2

is given by

(J i1i2
j1j2

)k1k2
l1l2

= 2δi1
k1

δi2
k2

δj1
l1

δj2
l2

+ δi1+2n
k1

δi2+2n
k2

δj1+2n
l1

δj2+2n
l2

− N − 1

2
δi2
j2δ

i1
k1

δi2
l1

δk2
l2

, (3.48)
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which is further symmetrized as

J̃
i1i2
j1j2

=
1

2

(
J i1i2

j1j2
+ J j1j2

i1i2

)
. (3.49)

Thus, the DMVT using the P , Q and G conditions is formulated into SDPA as




Minimize H • Y

subjected to F i • Y = ci

Ẽ
i1i2
j1j2

• Y = δi1
j1δ

i2
j2 − δi1

j2δ
i2
j1

J̃
i1i2
j1j2

• Y = 0.

(3.50)

It is convenient to fold our 2-RDM into a compact form,

P i1i2
j1j2 → P i

j (3.51)

by renumbering i = i1 + i2(i2−1)
2

if i1 > i2 and discarding P when i1 ≤ i2. This

helps to cut down unnecessary variables and to automatically assume that 2-RDM

has antisymmetric property. Similarly, the Q matrix and other linear constraints

are also folded. Note that the G matrix does not have such a symmetry property,

so that we use all the elements.

The present method involves very large number of linear constraints and may

not be efficient: a merit is that the SDPA program is used without any modification.

However, if we make a problem-specific SDP solver, it would be much more efficient

than the present one, and such study is now in progress.

The DMVT formulated above has been applied to the ground states of different

space and spin symmetries of neutral and charged species of 16 different atoms

and molecules. They are Be(1S), Be(3S), LiH(1Σ+), LiH(3Σ+), BeH+ BH+, BH,

CH+, CH, CH−, NH+, NH−, NH, OH+, OH−, OH, HF+, HF, BH2(
2A1), BH2(

2B1),

CH2(
1A1), CH2(

3B1), linear CH2(
3Σ−

u ), NH2(
2A1), NH2(

2B1), H2O, H2O
+, FH+

2 ,

BH3, CH3, NH3, NH3(dis) (‘dis’ stands for distorted in the sense that one bond

length shorten by 0.9 time, another one lengthen by 1.1 time) and H3O
+.

We used three different basis sets, double and triple-ζ s-type GTOs and STO-6G,

for Be, and double-ζ s-type GTOs by Huzinaga[20] and Dunning[21] and STO-6G

for LiH. For all the other molecules, we used STO-6G basis set[22]. The geometries

we used are the experimental ones[23, 24].
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TABLE I: Total energy and correlation energy in % in parentheses calculated by DMVT

with P +Q and P +Q+G conditions compared with those obatined by the wave function

methods, full CI and Hartree-Fock. The basis set is STO-6G except for notice.

System State Active Eleb DM(P + Q) DM(P + Q + G) Full CI Hartree-Fock
MOa (α + β)

Bec 1S 4 4(2+2) -14.5934(176) -14.5827(100) -14.5827(100) -14.5685(0)

Be 1S 5 4(2+2) -14.5579(103) -14.5561(100) -14.5561(100) -14.5034(0)

Bed 1S 5 4(2+2) -14.6064(200) -14.5895(100) -14.5895(100) -14.5725(0)

Bec 3S 4 4(3+1) -13.3168(120) -13.3146(100) -13.3146(100) -13.3036(0)

Bed 3S 5 4(3+1) -14.3346(177) -14.3241(100) -14.3241(100) -14.3105(0)

LiHc 1Σ+ 6 4(2+2) -8.0034(139) -7.9924(100) -7.9922(100) -7.9635(0)

LiH 1Σ+ 6 4(2+2) -7.9731(104) -7.9724(100) -7.9723(100) -7.9519(0)

LiHc 3Σ+ 6 4(3+1) -7.8997(167) -7.8939(98) -7.8940(100) -7.8854(0)

LiH 3Σ+ 6 4(3+1) -7.8554(191) -7.8552(97) -7.8552(100) -7.8549(0)

BeH+ 1Σ+ 6 4(2+2) -14.8452(106) -14.8439(100) -14.8438(100) -14.8226(0)

BH+ 2Σ+ 6 5(3+2) -24.8169(151) -24.8015(100) -24.8015(100) -24.7712(0)

BH 1Σ+ 6 6(3+3) -25.1234(211) -25.0630(106) -25.0593(100) -25.0015(0)

CH+ 1Σ+ 6 6(3+3) -37.9618(227) -37.8896(107) -37.8853(100) -37.8251(0)

CH− 3Σ− 6 8(5+3) -37.9834(148) -37.9714(99) -37.9718(100) -37.9477(0)

CH 2Π 6 7(4+3) -38.2472(240) -38.1917(111) -38.1871(100) -38.1443(0)

NH+ 2Π 6 7(4+3) -54.4510(248) -54.3957(111) -54.3914(100) -54.3510(0)

NH− 2Π 6 9(5+4) -54.5292(161) -54.5150(99) -54.5151(100) -54.4920(0)

NH 3Σ− 6 8(5+3) -54.8280(144) -54.8160(100) -54.8161(100) -54.7887(0)

OH+ 3Σ− 6 8(5+3) -74.7805(138) -74.7719(100) -74.7720(100) -74.7491(0)

OH− 1Σ+ 6 10(5+5) -74.8127(100) -74.8112(95) -74.8127(100) -74.7851(0)

OH 2Π 6 9(5+4) -75.1164(158) -75.1013(99) -75.1014(100) -75.0756(0)

CONTINUE
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CONTINUED

HF+ 2Π 6 9(5+4) -99.1376(153) -99.1278(100) -99.1279(100) -99.1096(0)

HF 1Σ+ 6 10(5+5) -99.5258(100) -99.5229(89) -99.5258(100) -99.4998(0)

BH2
2A1 7 7(4+3) -25.7549(235) -25.7089(115) -25.7031(100) -25.6649(0)

BH2
2B1 7 7(4+3) -25.7317(233) -25.6837(113) -25.6783(100) -25.6383(0)

CH2
1A1 7 8(4+4) -38.9301(294) -38.8228(119) -38.8110(100) -38.7497(0)

CH2
3B1 7 8(5+3) -38.9043(214) -38.8566(107) -38.8534(100) -38.8089(0)

CH2
3Σ−

u 7 8(5+3) -38.8836(187) -38.8358(103) -38.8342(100) -38.7772(0)

NH2
2A1 7 9(5+4) -55.4134(244) -55.3570(111) -55.3525(100) -55.3101(0)

NH2
2B1 7 9(5+4) -55.4856(243) -55.4195(108) -55.4157(100) -55.3670(0)

H2O
1A1 7 10(5+5) -75.7953(232) -75.7310(104) -75.7290(100) -75.6789(0)

H2O
+ 2A1 7 9(5+4) -75.4912(262) -75.4218(106) -75.4192(100) -75.3748(0)

FH+
2

1A1 7 10(5+5) -99.8894(244) -99.8305(103) -99.8294(100) -99.7879(0)

BH3
1A1 8 8(4+4) -26.4681(258) -26.3932(120) -26.3827(100) -26.3287(0)

CH3
2A2 8 9(5+4) -39.6375(290) -39.5283(117) -39.5178(100) -39.4547(0)

NH3
1A1 8 10(5+5) -56.2061(334) -56.0617(115) -56.0516(100) -55.9855(0)

NH3 (dis) 1A 8 10(5+5) -56.1808(326) -56.0394(115) -56.0293(100) -55.9622(0)

H3O
+ 1A1 8 10(5+5) -75.9422(276) -75.8636(103) -75.8621(100) -75.8166(0)

a Number of active MOs.

b Number of electrons with the number of α and β electrons in parentheses.

c Basis set is double-ζ.

d Basis set is triple-ζ.
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3.4 Result and discussion

We show in Table I the total energy of the system calculated by the present method

and in parentheses the calculated correlation energy in percentage relative to the

Hartree-Fock (0%) and full-CI (100%) results. Two types of the SDP relaxation

calculations are performed. One uses the P and Q conditions together with the

seven conditions given by Eqs(2.3)-(2.10): it is referred to as DM(P + Q). The

other uses the G condition additionally and it is denoted as DM(P + Q + G).

We first examine the results of DM(P +Q) calculations. We see that the results

for OH− and HF are excellent, but this is not a good news but simply due to

the too restrictive variational space: 10 electrons are distributed into six orbitals

and therefore in this case P+Q condition gives the complete N -representability

condition(2 hole system)[25]. Similarly, the extent of overshooting is relatively small

because the variational space is too restrictive. When the variation is reasonably

free, the DM(P + Q) energy overshoots too much the full-CI energy up to 334% of

the full-CI correlation energy for NH3. This result shows that the P + Q condition

together with the above seven conditions is still too far from the complete N -

representability condition.

When we impose further the G condition, we obtain the results shown under

DM(P + Q + G). They are much improved in comparison with the results of

DM(P+Q). The calculated correlation energy percentages range within 100 to 110%

for atoms and diatomic molecules, while they range in 110% ∼ 120% for triatomic

molecules. This means that the G condition is a nice restrictive condition for the

N -representability. We investigated distorted ammonia to examine whether the

spatial symmetry affects the N -representability condition, however, this calculation

shows that there is no effect by such a small distortion; the accuracies of the two

calculations are almost the same.

The SDP variational method should give, in principle, a lower bound for en-

ergy, however, compared to the full-CI results, the breakdown where the calcu-

lated SDPA energy is higher than the full-CI energy occurs for LiH(3Σ, STO-6G),

LiH(3Σ, double-ζ), CH−, NH−, OH, OH− and HF, though the violations are within
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1 mhartree. It seems that these breakdowns are related to the numerical errors in

the SDPA procedure, which we discuss later.

In Table II, we show the (non-zero) dipole moments of the molecules calculated

here. The dipole moment obtained at the level of DM(P + Q) is not so good. In

particular, those for CH, NH+, CH2, H2O and H2O
+ are worse than the Hartree-

Fock results. At the DM(P + Q + G) level, however, the dipole moments are

drastically improved and all the results well reproduce the full-CI ones, except for

NH3 and NH3(dis) for which even Hartree-Fock calculations give good results and

the deviations are very small.

In Table III, we show the virial coefficient 〈V 〉/〈T 〉, where 〈V 〉 and 〈T 〉 denote

average potential and kinetic energies, respectively, which must be two for com-

pletely variational wave function. When we use DM(P + Q + G) approximation,

the calculated virial is almost completely identical with the full-CI result.

Next, we discuss the numerical accuracy of the SDP method. In Tables IV and

V, we summarize the number of the constraints and the numerical errors of the

DM(P + Q) and DM(P + Q + G) calculations. The primal feasible error is defined

by

max

{∣∣∣∣∣[X −
m∑

i=1

F ixi + F 0]pq

∣∣∣∣∣ : p, q = 1, 2, . . . , n

}
(3.52)

and the dual feasible error is defined by:

max {|F i • Y − ci| : i = 1, 2, . . . , m} . (3.53)

The gap denotes the difference between the primal and dual functions defined by:

∣∣∣∣∣
m∑

i=1

cixi − F 0 • Y

∣∣∣∣∣ . (3.54)

These three quantities give criteria of the accuracy of the SDPA. In the SDPA, our

object is the minimization of the dual form of the problem, so that the dual feasible

error is an important quantity, indicating the numerical accuracy of the calculation.

For DM(P +Q), the dual feasible error is in the range of 10−7 ∼ 10−12, while for

DM(P +Q+G), it ranges 10−5 ∼ 10−8. As the number of the constraints increases

drastically in the P + Q + G calculations, the numerical accuracy becomes much
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TABLE II: Dipole moments calulated by the DMVT with P + Q and P + Q + G

conditions compared with those obtained by the wave function method.The basis

set is STO-6G except for notice.

Molecle State DM(P + Q) DM(P + Q + G) Full CI Hartree-Fock

LiHa 1Σ+ 1.6445 1.6164 1.6192 2.0764

LiH 1Σ+ 1.7372 1.7523 1.7519 1.9339

LiHa 3Σ+ 0.6225 0.6258 0.6258 0.6261

LiH 3Σ+ 1.5897 1.5906 1.5907 1.5915

BeH+ 1Σ+ 1.3203 1.3188 1.3196 1.2987

BH+ 2Σ+ 0.0495 0.0223 0.0223 0.0197

BH 1Σ+ 0.2833 0.2935 0.2994 0.3806

CH+ 1Σ+ 0.6893 0.6764 0.6905 0.7253

CH− 3Σ− 0.1826 0.1925 0.1929 0.1669

CH 2Π 0.6016 0.4878 0.5044 0.4406

NH+ 2Π 0.8937 0.8729 0.8804 0.8789

NH− 2Π 0.1359 0.1311 0.1321 0.1431

NH 3Σ− 0.4730 0.4995 0.4996 0.5233

OH+ 3Σ− 0.9988 0.9741 0.9742 0.9875

OH− 1Σ+ 0.0620 0.0637 0.0620 0.0725

OH 2Π 0.4497 0.4738 0.4745 0.5166

HF+ 2Π 0.9600 0.9993 0.9999 1.0786

HF 1Σ+ 0.5420 0.5383 0.5420 0.5228

BH2
2A1 0.0037 0.0328 0.0344 0.0466

CH2
1A1 0.2435 0.5057 0.5293 0.6224

CH2
3B1 0.0838 0.0857 0.0934 0.1006

NH2
2A1 0.5170 0.5407 0.5509 0.5580

NH2
2B1 0.6433 0.6816 0.6896 0.7200

H2O 1A1 0.5993 0.6460 0.6487 0.6927

H2O+ 2A1 0.8718 0.9857 0.9920 1.0724

FH+
2

1A1 1.0368 1.0429 1.0437 1.0560

NH3
1A1 0.6903 0.6901 0.6922 0.6935

NH3 (dis) 1A 0.6660 0.6634 0.6767 0.6937

H3O+ 1A1 1.4162 1.4286 1.4289 1.4320
a Basis set is double-ζ.
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TABLE III: Virial coefficients calulated by the DMVT with the P +Q and P +Q+G

conditions compared with those obtained by the wave function methods.The basis

set is STO-6G except for notice.

System State DM(P + Q) DM(P + Q + G) Full CI Hartree-Fock

Bea 1S 1.9975 1.9989 1.9989 1.9994

Be 1S 1.9621 1.9614 1.9614 1.9558

Beb 1S 2.0017 2.0006 2.0006 2.0000

Bea 3S 1.7459 1.7461 1.7461 1.7464

Beb 3S 1.9774 1.9766 1.9766 1.9759

LiHa 1Σ+ 2.0038 1.9977 1.9977 1.9929

LiH 1Σ+ 1.9832 1.9826 1.9826 1.9837

LiHa 3Σ+ 1.9908 1.9875 1.9875 1.9826

LiH 3Σ+ 1.9579 1.9577 1.9577 1.9574

BeH+ 1Σ+ 2.0036 2.0031 2.0031 2.0041

BH+ 2Σ+ 1.9918 1.9919 1.9918 1.9931

BH 1Σ+ 1.9574 1.9565 1.9566 1.9550

CH+ 1Σ+ 2.0044 2.0040 2.0039 2.0025

CH− 3Σ− 1.9393 1.9392 1.9393 1.9396

CH 2Π 1.9781 1.9778 1.9777 1.9773

NH+ 2Π 2.0164 2.0156 2.0154 2.0144

NH− 2Π 1.9596 1.9597 1.9597 1.9601

NH 3Σ− 1.9941 1.9939 1.9938 1.9939

OH+ 3Σ− 2.0199 2.0194 2.0194 2.0183

OH− 1Σ+ 1.9672 1.9671 1.9672 1.9678

OH 2Π 1.9967 1.9965 1.9965 1.9965

CONTINUE
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CONTINUED

HF+ 2Π 2.0218 2.0212 2.0212 2.0201

HF 1Σ+ 2.0001 2.0001 2.0001 1.9999

BH2
2A1 1.9722 1.9727 1.9731 1.9738

BH2
2B1 1.9699 1.9702 1.9705 1.9712

CH2
1A1 1.9849 1.9840 1.9840 1.9841

CH2
3B1 1.9889 1.9884 1.9886 1.9886

CH2
3Σ−

u 1.9882 1.9876 1.9878 1.9877

NH2
2A1 1.9950 1.9943 1.9942 1.9940

NH2
2B1 1.9956 1.9955 1.9955 1.9956

H2O
1A1 1.9966 1.9968 1.9968 1.9967

H2O
+ 2A1 2.0176 2.0152 2.0151 2.0138

FH+
2

1A1 2.0183 2.0159 2.0158 2.0143

BH3
1A1 1.9835 1.9836 1.9843 1.9853

CH3
2A2 1.9941 1.9939 1.9944 1.9948

NH3
1A1 1.9981 1.9985 1.9984 1.9985

NH3 (dis) 1A 1.9973 1.9976 1.9974 1.9976

H3O
+ 1A1 1.9972 1.9941 1.9941 1.9934

a Basis set is double-ζ.

b Basis set is triple-ζ.
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worse in the DM(P +Q+G) results. The gap value shows the same tendency. Worst

five are HF(3.99× 10−5), OH− (2.72× 10−5) LiH(double-ζ, 3Σ; 2.41× 10−5), CH−

(2.31×10−5) and NH− (1.37×10−5). We notice that they have the DM(P +Q+G)

energies higher than the full-CI ones, though these values must be lower than the

full-CI values. There seems to be some relation between the gap value and the

numerical accuracy in the SDPA technique. Another reason is certainly the too

small variational freedom in the calculations of HF and OH−: actually in these

cases P and Q conditions are already sufficient: the number of hole is 2, so, 2 hole

system with Q condition is just like performing variational calculation for 2 electron

system with P condition, therefore enforcing P , Q and G conditions is essentially

the same as enforcing P and Q conditions.

The primal feasible values are very small (10−12 ∼ 10−14) for DM(P + Q) cal-

culations and also small (10−10 ∼ 10−12) for DM(P + Q + G) calculations. We do

not find any relationship between the accuracies of the present calculations and the

primal feasible errors. So the accuracy of the present calculation seems to be related

only to that of the primal problem.

In table VI, we show the occupation numbers (eigenvalues of 1-RDM) for Be(1S,

STO-6G), Be(1S, triple-ζ), Be(3S, triple-ζ), H2O(1A1, STO-6G), and CH2(
1A1,

STO-6G). For Be(1S, STO-6G), the occupation numbers of the 2p orbitals should

be 6-fold degenerate. Although we didn’t impose such constraints, this degeneracy

accurately holds in both DM(P + Q) and DM(P + Q + G) calculations. For singlet

states, both DM(P + Q) and DM(P + Q + G) calculations reproduced the degen-

eracy of the two-fold occupation without constraints. Generally, the occupation

numbers of the DM calculations are much more distributed over all the natural or-

bitals than those of the fullCI. Although such trend is reduced for DM(P + Q + G)

calculation, it contradicts our expectation: the occupation numbers are expected to

be less distributed in the calculations with less sufficient N -representability condi-

tions. An extreme case was CH2, this tendency is very amplified and the accidental

degeneracy of occupation are found in the DM(P + Q) calculation.

In table VII, the rms (root-mean-square) deviation d of the 2-RDM from the

60



TABLE IV: Occupation number calculated by DMVT with P + Q and P + Q + G

conditions compared with those obatined by the wave function methods, full CI and

Hartree-Fock, for Be, H2O, CH2.

Systam, state, basis DM(P+Q) DM(P+Q+G) FullCI Hatree-Fock

Be, 1S , STO-6G 0.036641× 4 0.035909× 6 0.035901× 6 0× 6

0.036642× 2

0.890243×2 0.892275 ×2 0.892298 ×2 1× 4

0.999832×2 0.999997 ×2 0.999998 ×2

Be, 1S, triple-ζ 0.000202× 2 0.000064× 2 0.000055× 2 0× 6

0.001041× 2 0.000595× 2 0.000590× 2

0.006149× 2 0.004153× 2 0.004119× 2

0.993649× 2 0.995837× 2 0.995879× 2 1× 4

0.998959× 2 0.999352× 2 0.999357× 2

Be, 3S, triple-ζ 0.000004 0.000000 0.000000 0× 6

0.000187 0.000001 0.000000

0.000573 0.000011 0.000007

0.000645 0.000013 0.000009

0.000702 0.000707 0.000707

0.001511 0.000712 0.000711

0.998534 0.999280 0.999284 1× 4

0.999252 0.999286 0.999287

0.999293 0.999990 0.999995

0.999299 0.999998 1.000000

CONTINUE
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CONTINUED

H2O, 1A1, STO-6G 0.029795× 2 0.013850× 2 0.013304× 2 0× 4

0.031585× 2 0.014766× 2 0.013509× 2

0.970205× 2 0.986433× 2 0.986732× 2 1× 10

0.970570× 2 0.987475× 2 0.988323× 2

0.998733× 2 0.998702× 2 0.998973× 2

0.999114× 2 0.998776× 2 0.999161× 2

0.999998× 2 0.999999× 2 0.999999× 2

CH2, 1A1, STO-6G 0.037796× 4 0.014336× 2 0.010854× 2 0× 6

0.314251× 2 0.016294× 2 0.012979× 2

0.685804× 2 0.069501× 2 0.050589× 2

0.962204× 4 0.929480× 2 0.947809× 2 1× 8

0.999945× 2 0.984098× 2 0.987470× 2

0.986297× 2 0.990307× 2

0.999993× 2 0.999993× 2

fullCI,

d =
√ ∑

i1i2j1j2

{(Γcalculated)
i1i2
j1j2 − (Γfullci)

i1i2
j1j2}2 (3.55)

is presented for the systems examined in table VI. The deviations of the 2-RDM

are quite small in DM(P + Q + G) calculation especially for small systems, where

DM(P + Q + G) give the identical total energy and virial coefficient to fullCI.

However, DM(P + Q) calculations gave worse results and even worse than Hartree-

Fock for H2O and CH2.

In table VIII, we compare the largest eigenvalues of P , Q and G-matrices and

smallest eigenvalues of G-matrix, for the same systems. Largest eigenvalues of P

and Q-matrices become smaller as the calculation quality becomes better, while

those of G-matrix become larger. In DM(P + Q) calculations, smallest eigenvalues

of G-matrix are negative. As we expected, smallest eigenvalue of G-matrix becomes

smaller when electron correlation gets larger. We didn’t show the smallest eigen-

values of P and Q-matrices since in any case, they are almost zero (absolute values

are smaller than 10−6). The deviation of these values are large for CH2 (largest
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TABLE V: RMS deviations of the 2-RDMs calculated by DMVT with P + Q and

P + Q + G conditions from those by fullCI for Be, H2O, CH2

System, state, basis DM(P+Q) DM(P+Q+G) FullCI Hartree-Fock

Be, 1S, STO-6G 0.049208 0.000162 0 0.526569

Be, 1S, triple-ζ 0.049615 0.003567 0 0.100331

Be, 3S, triple-ζ 0.029401 0.000715 0 0.039123

H2O, 1A1, STO-6G 0.467084 0.029694 0 0.266154

CH2,
1A1, STO-6G 1.604712 0.153503 0 0.484788

eigenvalue of G-matrix for DM(P + Q + G)) calculation is 7.679238 compared to

fullCI’s one 7.746013), while the SDPA errors are small(primal and dual feasibilities

are 4.14×10−12 and 3.54×10−6, respectively, and gap is 2.69×10−7). Therefore, we

conclude that the error originates from the insufficiency of the N -representability

conditions rather than that of the SDPA.

The trace of Q matrix is normalized to (r−N)× (r−N +1), where r is number

of MO(or rank of 1-RDM) and N is the number of the electrons. This condition is

satisfied when we impose the constraint for the number of the electrons.

Lastly we note that we find essentially no problem in finding the minimum and

this should be the case for other systems. This is certainly a merit of the present

method.
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TABLE VI: Number of the constraints and the numerical errors of the DM(P + Q)

calculations.The basis set is STO-6G except for notice.

System State Activea Ele(α + β)b No. of Primal feasible Dual feasible Gap
set Constraints error error

Bec 1S 4 4(2+2) 183 1.87× 10−14 9.24× 10−11 1.17× 10−9

Be 1S 5 4(2+2) 440 7.87× 10−14 4.35× 10−11 8.03× 10−13

Bed 1S 5 4(2+2) 440 5.49× 10−14 1.41× 10−10 1.89× 10−11

Bec 3S 4 4(3+1) 183 4.12× 10−11 1.17× 10−7 3.87× 10−8

Bed 3S 5 4(3+1) 440 7.86× 10−12 1.12× 10−7 9.58× 10−9

LiHc 1Σ+ 6 4(2+2) 911 7.24× 10−14 9.24× 10−9 3.46× 10−9

LiH 1Σ+ 6 4(2+2) 911 8.52× 10−14 1.08× 10−9 4.76× 10−11

LiHc 3Σ+ 6 4(3+1) 911 3.80× 10−12 1.75× 10−6 3.64× 10−7

LiH 3Σ+ 6 4(3+1) 911 3.41× 10−11 4.57× 10−8 1.89× 10−8

BeH+ 1Σ+ 6 4(2+2) 911 1.16× 10−13 3.02× 10−11 5.73× 10−13

BH+ 2Σ+ 6 5(3+2) 911 6.69× 10−14 1.86× 10−10 3.26× 10−12

BH 1Σ+ 6 6(3+3) 911 4.43× 10−14 8.29× 10−10 2.41× 10−11

CH+ 1Σ+ 6 6(3+3) 911 3.62× 10−14 1.30× 10−9 9.62× 10−12

CH− 3Σ− 6 8(5+3) 911 5.49× 10−12 8.97× 10−8 6.05× 10−9

CH 2Π 6 7(4+3) 911 5.91× 10−14 2.23× 10−9 2.80× 10−11

NH+ 2Π 6 7(4+3) 911 3.15× 10−14 9.98× 10−10 1.49× 10−11

NH− 2Π 6 9(5+4) 911 8.57× 10−12 7.06× 10−8 3.70× 10−9

NH 3Σ− 6 8(5+3) 911 9.79× 10−12 4.97× 10−7 1.85× 10−8

OH+ 3Σ− 6 8(5+3) 911 6.77× 10−12 8.16× 10−8 2.49× 10−9

OH− 1Σ+ 6 10(5+5) 911 7.50× 10−12 5.25× 10−7 7.32× 10−8

OH 2Π 6 9(5+4) 911 5.54× 10−12 1.35× 10−7 3.48× 10−9

CONTINUE
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CONTINUED

HF+ 2Π 6 9(5+4) 911 2.36× 10−12 8.42× 10−8 2.96× 10−9

HF 1Σ+ 6 10(5+5) 911 6.82× 10−12 1.12× 10−7 6.65× 10−9

BH2
2A1 7 7(4+3) 1692 6.43× 10−14 4.94× 10−10 4.65× 10−11

BH2
2B1 7 7(4+3) 1692 5.66× 10−14 8.16× 10−12 3.20× 10−12

CH2
1A1 7 8(4+4) 1692 3.25× 10−14 3.26× 10−11 3.19× 10−10

CH2
3B1 7 8(5+3) 1692 3.98× 10−14 5.94× 10−11 5.75× 10−10

CH2
3Σ−u 7 8(5+3) 1692 4.12× 10−14 6.59× 10−11 5.88× 10−11

NH2
2A1 7 9(5+4) 1692 3.63× 10−14 1.21× 10−9 1.22× 10−10

NH2
2B1 7 9(5+4) 1692 3.99× 10−14 2.46× 10−11 3.91× 10−10

H2O 1A1 7 10(5+5) 1692 3.33× 10−14 2.88× 10−10 1.29× 10−10

H2O+ 2A1 7 9(5+4) 1692 3.31× 10−14 3.02× 10−11 2.64× 10−10

FH+
2

1A1 7 10(5+5) 1692 3.46× 10−14 3.19× 10−10 1.12× 10−10

BH3
1A1 8 8(4+4) 2897 6.57× 10−14 7.62× 10−10 3.37× 10−11

CH3
2A2 8 9(5+4) 2897 3.87× 10−14 1.12× 10−11 8.68× 10−10

NH3
1A1 8 10(5+5) 2897 4.07× 10−14 5.16× 10−11 1.02× 10−10

NH3 (dis) 1A 8 10(5+5) 2897 4.38× 10−14 5.87× 10−10 1.62× 10−10

H3O+ 1A1 8 10(5+5) 2897 4.13× 10−14 5.29× 10−10 6.77× 10−11

a Number of active MOs.
b Number of electrons with the number of α and β electrons in parentheses.
c Basis set is double-ζ.
d Basis set is triple-ζ.
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TABLE VII: Number of the constraints and the numerical errors of the DM(P +

Q + G) calculations.The basis set is STO-6G except for notice.

System State Activea Ele(α + β)b No. of Primal feasible Dual feasible Gap
MOs Constraints error error

Bec 1S 4 4(2+2) 983 6.55× 10−11 1.87× 10−7 2.87× 10−6

Be 1S 5 4(2+2) 2365 7.02× 10−12 4.93× 10−7 1.42× 10−6

Bed 1S 5 4(2+2) 2365 7.92× 10−11 4.15× 10−7 2.48× 10−6

Bec 3S 4 4(3+1) 983 1.12× 10−10 7.44× 10−7 3.08× 10−6

Bed 3S 5 4(3+1) 2365 1.41× 10−11 1.65× 10−7 2.94× 10−7

LiHc 1Σ+ 6 4(2+2) 4871 5.72× 10−12 2.33× 10−5 4.50× 10−6

LiH 1Σ+ 6 4(2+2) 4871 5.77× 10−12 7.55× 10−8 1.69× 10−6

LiHc 3Σ+ 6 4(3+1) 4871 3.53× 10−11 6.35× 10−7 2.41× 10−5

LiH 3Σ+ 6 4(3+1) 4871 5.79× 10−11 6.56× 10−7 2.58× 10−6

BeH+ 1Σ+ 6 4(2+2) 4871 2.42× 10−11 1.88× 10−7 1.93× 10−6

BH+ 2Σ+ 6 5(3+2) 4871 7.84× 10−12 7.50× 10−8 7.82× 10−7

BH 1Σ+ 6 6(3+3) 4871 2.80× 10−11 1.43× 10−5 1.61× 10−8

CH+ 1Σ+ 6 6(3+3) 4871 3.75× 10−12 2.41× 10−7 9.68× 10−7

CH− 3Σ− 6 8(5+3) 4871 1.43× 10−11 3.73× 10−7 2.13× 10−5

CH 2Π 6 7(4+3) 4871 6.06× 10−12 8.54× 10−6 1.91× 10−7

NH+ 2Π 6 7(4+3) 4871 4.15× 10−12 3.64× 10−6 4.98× 10−7

NH− 2Π 6 9(5+4) 4871 6.89× 10−12 3.39× 10−6 1.37× 10−5

NH 3Σ− 6 8(5+3) 4871 8.69× 10−11 1.88× 10−5 2.90× 10−6

OH+ 3Σ− 6 8(5+3) 4871 7.98× 10−12 4.05× 10−7 1.90× 10−6

OH− 1Σ+ 6 10(5+5) 4871 2.54× 10−11 5.65× 10−6 2.72× 10−5

OH 2Π 6 9(5+4) 4871 1.01× 10−11 2.78× 10−6 6.15× 10−6

CONTINUE
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CONTINUED

HF+ 2Π 6 9(5+4) 4871 1.09× 10−11 1.40× 10−6 6.07× 10−6

HF 1Σ+ 6 10(5+5) 4871 1.39× 10−11 7.37× 10−6 3.99× 10−5

BH2
2A1 7 7(4+3) 8993 2.50× 10−12 8.84× 10−8 8.00× 10−7

BH2
2B1 7 7(4+3) 8993 9.48× 10−12 1.23× 10−6 1.59× 10−6

CH2
1A1 7 8(4+4) 8993 4.14× 10−12 3.54× 10−6 2.69× 10−7

CH2
3B1 7 8(5+3) 8993 1.57× 10−10 4.05× 10−5 1.28× 10−7

CH2
3Σ−u 7 8(5+3) 8993 4.72× 10−12 3.98× 10−7 1.58× 10−6

NH2
2A1 7 9(5+4) 8993 7.65× 10−12 4.30× 10−6 1.30× 10−6

NH2
2B1 7 9(5+4) 8993 2.36× 10−12 3.22× 10−8 2.16× 10−6

H2O 1A1 7 10(5+5) 8993 1.54× 10−12 1.05× 10−7 3.63× 10−7

H2O+ 2A1 7 9(5+4) 8993 1.12× 10−11 6.86× 10−6 7.63× 10−7

FH+
2

1A1 7 10(5+5) 8993 3.78× 10−12 5.14× 10−7 6.07× 10−7

BH3
1A1 8 8(4+4) 15313 5.02× 10−11 5.34× 10−7 2.88× 10−7

CH3
2A2 8 9(5+4) 15313 4.26× 10−12 6.16× 10−7 9.01× 10−8

NH3
1A1 8 10(5+5) 15313 1.65× 10−12 4.62× 10−7 4.39× 10−7

NH3 (dis) 1A 8 10(5+5) 15313 3.29× 10−12 1.42× 10−6 4.14× 10−6

H3O+ 1A1 8 10(5+5) 15313 1.59× 10−12 2.30× 10−7 2.24× 10−6

a Number of active MOs.
b Number of electrons with the number of α and β electrons in parentheses.
c Basis set is double-ζ.
d Basis set is triple-ζ.
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TABLE VIII: Comparison of largest eigenvalues P , Q, G-matrices and smallest G-

matrix calculated by DMVT with P + Q and P + Q + G conditions compared with

those obatined by the wave function methods, full CI and Hartree-Fock for Be, H2O,

CH2.

System, state, basis DM(P+Q) DM(P+Q+G) FullCI Hartree-Fock

Be, 1S, STO-6G

Largest P 1.005284 1.000907 1.000874 1

Largest Q 2.264502 2.259861 2.259834 2

Largest G 3.675970 3.682340 3.682407 4

Smallest G -0.007288 0.000000 0.000000 0

Be, 1S, triple-ζ

Largest P 1.004751 1.000672 1.000612 1

Largest Q 2.008541 2.002209 2.002072 2

Largest G 3.978475 3.985686 3.985726 4

Smallest G -0.002482 0.000000 0.000000 0

Be, 3S, triple-ζ

Largest P 1.002019 0.999991 0.999995 1

Largest Q 2.005387 2.000230 2.000233 2

Largest G 3.994883 3.997833 3.997849 4

Smallest G -0.001439 0.000000 0.000000 0

H2O, 1A1, STO-6G

Largest P 1.034378 1.010041 1.008652 1

Largest G 9.805708 9.900236 9.904312 10

Smallest G -0.188367 0.000000 0.000000 0

CH2, 1A1, STO-6G

Largest P 1.090030 1.024402 1.019529 1

Largest Q 2.227026 2.059546 2.042417 2

Largest G 6.942144 7.679238 7.746013 8

Smallest G -0.208966 0.000001 0.000000 0
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3.5 Conclusion

The DMVT is developed systematically by using SDPA as a problem solver. This

technique is very stable and there were no example where we could not get a conver-

gence. In addition to several trivial conditions, the P + Q condition is insufficient,

while the P + Q + G condition gives satisfactory results, the extent of overshooting

the full-CI energy being small for the systems presently examined. The dipole mo-

ment and the virial coefficient calculated by the DM(P + Q + G) method are also

very close to the full-CI values. This method is applicable to the ground state of

any spin- and space symmetry of closed and open-shell systems.

In this DMVT approach, the calculated energy is a lower bound of the exact

energy. The errors of the present DM(P + Q + G) method are permissible in both

energy and properties. Though most quantum chemical method available give the

ground-state energy higher than the full-CI one, the present method giving lower

energy is equally permissible as an approximate quantum chemical method, if it is

stable and feasible in cost performance. For the second requirement, the present

stage of the theory is an infant stage, but much progress is expected in future.
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[14] M. V. Mihailović, and M. Rosina, Nuclear Physics, A237, 229(1975).

[15] K. Fujisawa, M. Kojima, K. Nakata, SDPA (SemiDefinite Programming Algo-

rithm) User’s Manual Version 5.00, August 1999.

ftp://ftp.is.titech.ac.jp/pub/OpRes/software/SDPA/5.00/.

70



[16] R. M. Erdahl and C. Garrod, Proc. Conf. on density matrices, Kingston, June

1974, ed. A. J. Coleman and R.M. Erdahl.

[17] H. Kummer, J. Math. Phys. 8, 2063, (1967).

[18] Yu. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Method in Con-

vex Programming: Theory and Applications SIAM, Philadelphia, 1993.

[19] M. Kojima, Semidefinite Programming and Interior-Point Methods,

http://www.is.titech.ac.jp/~kojima/wabun.html, 1996(in Japanese).

[20] S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).

[21] T.H. Dunning, JR., J. Chem. Phys. 53, 2823 (1970).

T.H. Dunning, JR. and P.J. Hay, In method of electronic structure theory, vol.

2, H.F. Schaefer III, ed., Plenum press (1977).

Actually, basis sets are taken from EMSL Gaussian Basis Set Order Form,

http://www.emsl.pnl.gov:2080/forms/basisform.html.

[22] W.J. Hehre, R.F. Stweart, and J.A. Pople, J. Chem. Phys. 51, 2657(1969).

[23] K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV.,

Electronic Constants of Diatomic Molecules, Van Nostrand Reinhold, New York,

1979.

[24] J.H. Callomon, E. Horita, K. Kuchitsu, W.J. Lafferty, A.G. Maki and C.S.

Pote, Landolt-Börnstein, Springer-Verlag, Berlin, 1976.

[25] A. J. Coleman, Rep. Math. Phys. 4, 113(1973).

71





Chapter 4.

Density matrix variational theory: application to

the potential energy surfaces and strongly

correlated systems

Abstract

The density matrix variational theory(DMVT) algorithm developed previously [J.

Chem. Phys., 114, 8282 (2001)] was utilized for calculations of the potential energy

surfaces of molecules, H4, H2O, NH3, BH3, CO, N2, C2 and Be2. The DMVT(PQG),

using the P , Q and G conditions as subsidiary condition, reproduced the full-CI

curves very accurately even up to the dissociation limit. The method described

well the quasi-degenerate states and the strongly correlated systems. On the other

hand, the DMVT(PQ) was not satisfactory especially in the dissociation limit and

its potential curves were always repulsive. The size-consistency of the method was

discussed and the G-condition was found to be essential for the correct behavior of

the potential curve. Further, we also examined the Weinhold-Wilson inequalities for

the resultant 2-RDM of DMVT(PQG) calculations. Two linear inequalities were

violated when the results were less accurate, suggesting that this inequality may

provide a useful N -representability condition for the DMVT.
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4.1 Introduction

The second-order reduced density matrix(2-RDM) completely describes the N -body

fermion system since any observable properties of the system can be calculated from

the 2-RDM[1, 2]. This fact has motivated us to use 2-RDM as a basic variable

of quantum mechanics instead of the wave function Ψ. If we can determine 2-

RDM without using Ψ, we have a closed form of quantum mechanics where the

basic variable is 2-RDM. We refer to such formalism of quantum mechanics as

density matrix theory(DMT). There are two categories in the DMT with respect to

the determination of the RDM. One is based on the density equation[3], which is

equivalent to the Schrödinger equation in the necessary and sufficient sence. This

approach is called density equation theory(DET). Recently, DET is extensively

studied and developed[4, 5, 6]. They have been summarized in a recent review

article[7]. The other is based on the Ritz variational principle expressed in terms of

2-RDM. This latter approach is called density matrix variational theory(DMVT).

The key in this approach is how well we can restrict our variable 2-RDM to be

N -representable[8].

Garrod and Percus[9] first formulated the DMVT. Kijewski applied the DMVT

to C2+ and found that the G-condition was rather strong condition[10]. Garrod et

al.[11, 12] also implemented their method and calculated the ground state of Be

atom very accurately. Erdahl proposed to use the convex program for solving the

DMVT and performed accurate calculation for He2 molecule[13]. Afterwards, the

interest for solving 2-RDM using the DMVT has almost disappeared for about 20

years. The reasons were probably that there was no rigorous mathematical and

computational algorithm for the DMVT calculation, and the computer facilities

were not so powerful at that time, so that their methods were applicable only to

extremely small systems from the limitation in the number of variational parame-

ters.

Recently, Erdahl and Jin[19] developed the DMVT based on the 3-RDM, and

applied it to the model system of one-dimensional periodic lattice of electron pairs.

They generalized the work of Garrod and Percus for higher order RDMs, and gave
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some insights for using 3-RDM as a basic variable.

In our previous study[14], we could efficiently implement the DMVT using the

semidefinite programming algorithm(SDPA)[15, 16, 17, 18] and succeeded to cal-

culate the 2-RDM of the ground state of different symmetry for many atoms and

molecules. We transformed the DMVT to the standard type problem of SDP. We

showed that the positive semidefiniteness conditions of the P , Q[8] and G[9] ma-

trices were very strong for atoms and molecules, though they are only necessary

conditions of the N -representability.

In the recent work of Mazziotti and Erdahl[20], positive semidefinite condition

of 3- and 4- RDMs were examined for solving the DMVT coupled with DET. They

demonstrated its performance for a boson model of two-energy-level system with

N = 10 ∼ 75. Valdemoro et al. also considered the functional reconstruction with

respect to the ensemble representability conditions[21].

Another promising approach was initiated by one of the authors[22, 23, 24,

25]. Since the exact Ψ is an eigen function of the Hamiltonian that has so simple

structure composed of only one- and two-body operators, the Ψ itself should also

have a simple structure reflecting the simple structure of the Hamiltonian. Some

explicit expressions of the structure of the exact wave function were given and the

theories for the ground and excited states was formulated and applied to a simple

model system.

In this paper, we extensively apply our DMVT to calculations of the potential

energy surfaces of molecules. Previously, we applied our DET to calculations of the

potential energy curves of small molecules[26]. Though the results were encouraging

around the equilibrium and elongated geometry, the calculation failed to converge

at large internuclear distances. Here, special attentions are paid to the performance

of DMVT for describing the electronic state of strongly correlated systems and the

multi-configurational systems. We also discuss the size-consistency property of the

method in connection with the N -representability condition. We will also examine

the Weinhold-Wilson inequalities[27, 28, 29] for the obtained 2-RDM and consider

their possibilities as another N -representability conditions in our method.
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4.2 Theory

4.2.1 Definitions and basic algorithm

First and second order reduced density matrices (1-, 2-RDMs), γ and Γ, are defined

by:

γi
j = 〈Ψ|a†iaj|Ψ〉 (4.1)

Γi1i2
j1j2 =

1

2
〈Ψ|a†i1a†i2aj2aj1|Ψ〉 (4.2)

where a† and a are creation and annihilation operators, respectively. Practical

complete N -representability condition is not known for 2-RDM: we know only some

necessary conditions. In the present DMVT, we use P , Q, and G conditions. The

P , Q, and G-matrices are defined by,

P i1i2
j1j2 = 〈Ψ|a†i1a†i2aj2aj1|Ψ〉 (4.3)

Qi1i2
j1j2 = 〈Ψ|ai1ai2a

†
j2a

†
j1|Ψ〉 (4.4)

Gi1i2
j1j2 = 〈Ψ|a†i1ai2a

†
j2aj1|Ψ〉 (4.5)

respectively. We enforce all of these matrices to be positive semidefinite. We also use

seven trivial conditions of 2-RDM, which are antisymmetric condition, hermiticity,

trace condition, number of electrons, number of spins, and expectation values of Sz

and S2.

In the DMVT, we take 2-RDM as a variational variable, and minimize the energy

within N -representability conditions, namely,

Emin = Min
Γ∈P(2)

TrHΓ, (4.6)

where H is the Hamiltonian of the system, P(2) is a set of 2-RDM that satisfy

approximate or nearly complete N -representability condition. We did two types of

calculations using the approximate N -representability conditions: one is with the

trivial representability condition plus P and Q condition, denoted as DMVT(PQ),

and the other is with the trivial condition plus P , Q and G conditions, denoted as

DMVT(PQG).
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For implementing the minimization problem with these linear and semidefinite-

ness conditions, we casted this problem into the SDP[15, 16, 17], and we employ

SDPA[18] as a standard SDP solver. Details were described in ref.[14].

4.2.2 Additional linear inequalities for the density matrices

Weinhold and Wilson[27], Davidson[28] and McRae and Davidson[29] derived some

other N -representability conditions that were expressed as linear inequalities using

only the diagonal elements of 2-RDM. Among them, the conditions independent

from those already used in our present method are,

Condition VI:

γi
i − 2Γij

ij − 2Γik
ik + 2Γjk

jk ≥ 0 (4.7)

Condition VII:

1− γi
i − γj

j − γk
k + 2Γij

ij + 2Γik
ik + 2Γjk

jk ≥ 0 (4.8)

Condition VIII: Positive semidefiniteness of the Ω matrix

Ω =




γ1
1 2Γ12

12 2Γ13
13 · · · 2Γ1t

1t γ1
1

2Γ12
12 γ2

2 2Γ23
23 · · · 2Γ2t

2t γ2
2

2Γ13
13 2Γ23

23 γ3
3 · · · 2Γ3t

3t γ3
3

...
...

...
...

...

2Γ1t
1t 2Γ2t

2t 2Γ3t
3t · · · γt

t γt
t

γ1
1 γ2

2 γ3
3 · · · γt

t 1




. (4.9)

These are the representability conditions that may be stronger than and/or may

reinforce the P , Q and G conditions. Since these conditions are given as linear

inequalities, it is easy to include them into the present DMVT formalism within the

SDP formalism, since SDP is an extension of the linear programming. In this study,

we examine the resultant 2-RDM against these two inequalities, the condition VI,

VII and VIII, and discuss the possibility of using these conditions as the additional

constraints in our DMVT formalism.
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4.2.3 Size-consistency

The positive semidefiniteness of the G-matrix includes a necessary condition for

size-consistency. In the original nonlinear form, the position representation of the

G-matrix is given by,

G(12|1′2′) = 〈(ψ†(2)ψ(1)− 〈ψ†(2)ψ(1)〉)†(ψ†(2′)ψ(1′)− 〈ψ†(2′)ψ(1′)〉)〉
= 〈(ψ†(1)ψ(2)− 〈ψ†(2)ψ(1)〉∗)(ψ†(2′)ψ(1′)− 〈ψ†(2′)ψ(1′)〉)〉
= 〈ψ†(1)ψ(2)ψ†(2′)ψ(1′)〉 − 〈ψ†(2)ψ(1)〉∗〈ψ†(2′)ψ(1′)〉

−〈ψ†(1)ψ(2)〉〈ψ†(2′)ψ(1′)〉+ 〈ψ†(2)ψ(1)〉∗〈ψ†(2′)ψ(1′)〉
= 〈ψ†(1)ψ(2)ψ†(2′)ψ(1′)〉 − 〈ψ†(1)ψ(2)〉〈ψ†(2′)ψ(1′)〉, (4.10)

where ψ(i) is a field operator defined by using one-particle complete basis set {ψj},

ψ(i) =
∑

j

ψj(i)aj. (4.11)

A static density-density autocorrelation function F (1|1′) [30] corresponds to the

G-matrix as,

F (1|1′) = 〈n(1)n(1′)〉 − 〈n(1)〉〈n(1′)〉,
= 〈ψ†(1)ψ(1)ψ†(1′)ψ(1′)〉 − 〈ψ†(1)ψ(1)〉〈ψ†(1′)ψ(1′)〉
= G(11|1′1′) (4.12)

where n(i) is the density operator defined by,

n(i) = ψ†(i)ψ(i). (4.13)

Using the positive semidefiniteness of G(12|1′2′),
∫

x(12)G(12|1′2′)x(1′2′)∗dτ1dτ2dτ1′dτ2′ ≥ 0, (4.14)

where x(12) is an arbitrary two particle function, F (1|1′) is shown to be also positive

semidefinite by integrating the G-matrix with respect to the two particle function

x(12) given by x(12) = x(1)δ(1− 2), as

0 ≤
∫

x(12)G(12|1′2′)x(1′2′)∗dτ1dτ2dτ1′dτ2′
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=
∫

x(1)δ(1− 2)G(12|1′2′)x(1′)∗δ(1′ − 2′)∗dτ1dτ2dτ1′dτ2′

=
∫

x(1)G(11|1′1′)x(1′)∗dτ1dτ1′

=
∫

x(1)F (1|1′)x(1′)∗dτ1dτ1′ (4.15)

where x(1) is an arbitrary one-particle function. From the positive semidefiniteness

of F (1|1′), it is shown that F (1|1′) is everywhere non-negative.

The size-consistency requires more strict condition; when |1− 1′| → ∞, F (1|1′)
should asymptotically goes to zero, namely,

lim
|1−1′|→∞

F (1|1′) = 0. (4.16)

The positive semidefiniteness of the G-matrix guarantees only the non-negativity of

F (1|1′), but does not this asymptotical condition. Thus, the DMVT(PQG) includes

a necessary condition for the size-consistency, while in the DMVT(PQ), even F (1|1′)
is not necessarily non-negative.

4.3 Results and discussions

4.3.1 H4 system

First, we applied our DMVT to the potential energy surface of H4. This system

has been frequently used as a benchmark molecule of many methods for the quasi-

degenerate situation:[31] the agb2u and agb3u configurations become equivalent for a

square geometry and therefore, become degenerate. We used the DZ basis set[33, 34]

for H and defined the potential energy surface with the coordinates (θ, R) depicted

in Fig. 1. R gives the size of the molecule and θ defines the asymmetry of the

structure. We calculated three different cuts of the potential energy surface that

were also tested in ref.[31].

First, we examined the cut of stretching R with θ = 90̊ fixed, namely, the

square structure as a function of R. The results are summarized in table I. The
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Figure I: Coordinate for H4.

TABLE I: Total energy and correlation energy in (%) for H4 as a function of R with

θ fixed at 90 degree.

R(Å) DMVT(PQ) DMVT(PQG) Full-CI Hartree-Fock

0.6 -2.0405(186) -1.9553(104) -1.9511(100) -1.8474(0)

0.8 -2.1485(168) -2.0629(101) -2.0610(100) -1.9330(0)

1.0 -2.1881(177) -2.0693(101) -2.0684(100) -1.9122(0)

1.2 -2.2210(191) -2.0480(100) -2.0474(100) -1.8568(0)

1.4 -2.2407(194) -2.0251(100) -2.0246(100) -1.7939(0)

1.6 -2.2367(183) -2.0087(100) -2.0085(100) -1.7340(0)

1.8 -2.2226(141) -1.9993(100) -1.9992(100) -1.4551(0)

2.0 -2.2055(141) -1.9945(100) -1.9945(100) -1.4818(0)
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TABLE II: Total energy and correlation energy in (%) for H4 as a function of θ with

R fixed at the equilibrium value of 0.869Å.

θ(degrees) DMVT(PQ) DMVT(PQG) Full-CI Hartree-Fock

90.0 -2.1656(170) -2.0711(101) -2.0697(100) -1.9326(0)

89.9 -2.1656(170) -2.0711(101) -2.0697(100) -1.9335(0)

89.5 -2.1656(172) -2.0713(101) -2.0698(100) -1.9372(0)

89.0 -2.1655(174) -2.0718(101) -2.0703(100) -1.9418(0)

88.0 -2.1654(177) -2.0738(101) -2.0721(100) -1.9509(0)

85.0 -2.1673(180) -2.0849(102) -2.0830(100) -1.9777(0)

80.0 -2.1869(185) -2.1120(101) -2.1106(100) -2.0205(0)

70.0 -2.2337(185) -2.1727(101) -2.1721(100) -2.0992(0)

DMVT(PQG) reproduced the full-CI curve quite accurately. For large R, it gave

almost identical total energy and the errors were within 1 mhartree for R > 1.0Å,

though the total correlation energies were large, for example, 0.51 au for R = 2.0Å.

The method was found to give good description for the quasi-degenerate system. On

the other hand, the DMVT(PQ) gave 40 ∼ 90% errors of the correlation energies.

Second, the cut of θ ranging from 70.0̊ to 90.0̊ with R = 0.869Å, which is near

equilibrium distance is examined in table II. At θ = 90̊ , electronic state becomes

quasi-degenerate. The DMVT(PQG) gave very smooth potential curve parallel to

the full-CI without artificial cusp at θ = 90̊ [31]. The deviations were within 2

mhartree and 2% of the total correlation energy through out the geometries. For

this system, the errors were constant regardless of the quasi-degeneracy.

Lastly, the cut of θ = 70̊ ∼ 90̊ with R elongated to 1.738Å, namely, 2 ×
Re, is examined in table III. Surprisingly, the DMVT(PQG) gave almost identical

results with the full-CI ones: the deviations were less than 1 mhartree for all the

geometries. Though the present calculations did not include polarization functions,

the DMVT(PQG) gave very accurate potential energy surface of H4.
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TABLE III: Total energy and correlation energy in (%) for H4 as a function of θ

with R fixed at 1.738Å.

θ(degrees) DMVT(PQ) DMVT(PQG) Full-CI Hartree-Fock

90.0 -2.2275(174) -2.0016(100) -2.0015(100) -1.6962(0)

89.9 -2.2275(174) -2.0015(100) -2.0015(100) -1.6967(0)

89.5 -2.2276(175) -2.0017(100) -2.0015(100) -1.6988(0)

89.0 -2.2276(175) -2.0019(100) -2.0015(100) -1.7014(0)

88.0 -2.2278(177) -2.0023(100) -2.0018(100) -1.7067(0)

85.0 -2.2289(181) -2.0041(100) -2.0033(100) -1.7231(0)

80.0 -2.2327(188) -2.0087(100) -2.0080(100) -1.7523(0)

70.0 -2.2465(207) -2.0258(100) -2.0255(100) -1.8198(0)

For this system all the Weinhold-Wilson inequalities were satisfied for all the

potential energy surfaces examined here. This also support the high quality of

2-RDM calculated by the DMVT(PQG).

4.3.2 Ne and the equilibrium geometry of N2, CO, C2, LiF

and CH4

Next, the DMVT is applied to the ground state of Ne, N2, CO, C2, LiF and CH4,

which were not calculated in the previous study[14]. In table IV, we summarized

the total energy for these systems. In all calculations, we adopted STO-6G minimal

basis[35] and experimental geometries[36, 37] except for Ne. For Ne, [3s2p] basis

set was used. The 1s orbitals of the second raw atoms were fixed as cores.

Generally, the results of DMVT(PQG) calculations were satisfactory except for

C2 and CH4. The DMVT(PQ) calculations overshoot the energy of these molecules,

especially for C2, by 802%. The DMVT(PQG) recovered it up to 117%. The devi-

ation is still not small, however, the convergence to the exact value is encouraging

since the ground state of C2 is known to be quasi-degenerate even at the equilibrium
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TABLE IV: Total energy and correlation energy in (%) Ne, CO, N2, LiF, C2, and

CH4 at equilibrium geometry.

System State MOa Act. Eleb DMVT(PQ) DMVT(PQG) Full-CI Hartree-Fock

Ne 1S 8(9) 8 -129.2430(705) -128.6292(105) -128.6245(100) -128.5224(0)

CO 1Σ 8(10) 12 -113.1163(584) -112.4544(108) -112.4426(100) -112.3033(0)

N2
1Σ+

g 8(10) 12 -109.4466(571) -108.7123(108) -108.7002(100) -108.5418(0)

LiF 1Σ 8(10) 10 -106.7727(568) -106.4448(102) -106.4435(100) -106.3731(0)

C2
1Σ+

g 8(10) 10 -77.3387(802) -75.4793(117) -75.4340(100) -75.1626(0)

CH4
1A1 8(10) 8 -40.4335(403) -40.2100(124) -40.1905(100) -40.1102(0)

a Number of active MOs, with the number of total MOs in parentheses.
b Number of active electrons.

geometry. We also obtained remarkable improvement for other systems by requiring

the G-condition.

The Weinhold-Wilson inequalities VI, VII and VIII were examined for these

systems. For CO, LiF, and Ne, all of the inequalities were satisfied. For CH4

and C2, the inequality type VI and VII were violated, and for N2, the inequal-

ity type VI was violated but others were satisfied, though the violations were

very small as -0.000297∼-0.002063(CH4, type VI), -0.000127∼-0.001803(CH4, type

VII), -0.004169∼-0.019446(C2, type VI), -0.000169∼-0.030852(C2, type VII) and

-0.00283 ∼-0.00551(N2, type VI), respectively. These violations were parallel to

the errors of the DMVT(PQG) calculations: the deviations CH4(124%), C2(117%),

and N2(108%) were larger than those of the other systems. This implies that the

inequalities VI and VII may be adopted as one of the additional N -representability

conditions for the DMVT.

4.3.3 Potential curves of H2O, NH3 and BH3

Double dissociation of H2O and triple dissociation of NH3 and BH3 are interesting

examples, since four and six electrons are correlated in the bond dissociation pro-

83



-76.5

-76

-75.5

-75

-74.5

-74

-73.5

-73

0 1 2 3 4 5

T
ot

al
 e

ne
rg

y(
au

)

Distance(Angstrom)

Hartree-Fock
DMVT(PQ)

DMVT(PQG)
Full-CI

Figure II: Potential curve for the double dissociation of H2O.

cesses. We calculated the potential curves for the symmetric stretching mode of

these systems at several points within R = 0.5 ∼ 5.0Å, and the results were shown

in Figs. 2-4. We used STO-6G basis set and kept 1s orbitals of O, N and B to be

frozen. Spectroscopic constants of equilibrium distance (re), harmonic frequency

(ωe), and dissociation energy (De) were summarized in table V. The potential en-

ergy curve was fit with the 6-th extended Rydberg function for some points near the

equilibrium geometry and the ωe was calculated by the Dunhum method[38]. The

H-O-H and H-N-H angles were fixed at the experimental values and only the H-O

and H-N bonds were symmetrically stretched: ωe was defined for this coordinate

and therefore different from that of the normal mode analysis.

For H2O and NH3, DMVT(PQG) simulated the full-CI curves very accurately

even up to the dissociation limit and the two curves almost overlapped. H2O

and NH3 dissociate into O(3P) + H(1S) + H(1S) and N(4S) + H(1S) + H(1S) +

H(1S), respectively, and at the dissociation limit, the electronic state becomes multi-

configurational state. DMVT(PQG) accurately described these multi-configurational
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Figure III: Potential curve for the triple dissociation of NH3.
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Figure IV: Potential curve for the triple dissociation of BH3.
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TABLE V: Spectroscopic constants of H2O, NH3, BH3, C2, N2 and CO.

System Method re(Å) ωe(cm
−1) De(eV)

H2O Hartree-Fock 1.824 3952 18.471

Full-CI 1.895 3253 6.162

DMVT(PQG) 1.894 3276 6.227

NH3 Hartree-Fock 1.025 3750 33.008

Full-CI 1.057 3324 10.686

DMVT(PQG) 1.057 3291 10.956

BH3 Hartree-Fock 1.154 3115 31.284

Full-CI 1.178 2883 14.280

DMVT(PQG) 1.181 2854 14.537

C2 Hartree-Fock 1.233 2207 16.876

Full-CI 1.257 2035 6.790

DMVT(PQG) 1.299 1679 7.212

N2 Hartree-Fock 1.129 2715 31.211

Full-CI 1.210 2061 6.220

DMVT(PQG) 1.199 1980 6.622

CO Hartree-Fock 1.146 2461 12.692

Full-CI 1.193 2063 9.328

DMVT(PQG) 1.201 1990 9.540
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states, namely, static electron correlations: the deviations from the full-CI were less

than 0.5 mhartree in the dissociation limit. On the other hand, while DMVT(PQ)

reproduced the curves in the short bond region, it failed at the large internuclear

distances. DMVT(PQ) curve did not bound. For BH3, even the DMVT(PQG)

curve slightly deviates from the full-CI curve for RB−H > 2.0Å. The dissociation

limit of BH3 is heavily quasi-degenerate: the electronic state is represented by sev-

eral configurations including quadruple excitations. DMVT(PQ) curve for BH3 has

a hump at around 1.5Å, and, the potential curve is repulsive in nature.

Since DMVT(PQG) calculations gave accurate potential curves, their spectro-

scopic constants were also accurate. For these systems, the deviations from the

full-CI were within 0.003Å and 30 cm−1, for re and ωe, respectively. The dissocia-

tion energies (De) were estimated slightly larger by 0.06, 0.27 and 0.26 eV, for H2O,

NH3 and BH3, respectively. This is because DMVT(PQG) calculations overshoot

the full-CI energy around the equilibrium geometries rather than they deviate in

the dissociation limit. Since the dissociations of these systems are homolytic and

include multiple bonds, the Hartree-Fock description of the dissociation limit was

of course very crude.

We examined the Weinhold-Wilson inequalities for BH3, since the deviation from

the full-CI was large for this molecule. Actually, the violations of the conditions VI

and VII at the equilibrium distance ranged −0.000019 ∼ −0.003018 and −0.000391

∼ −0.002608, respectively, and those of the conditions VI and VII were −0.004804

∼ −0.013975, and −0.001448 ∼ −0.001956 at the dissociation limit(R = 5Å).

4.3.4 Potential curves of CO, C2, N2, and Be2.

Next, we apply the DMVT to the potential energy curves of CO, C2, N2 and Be2,

since their electronic states are very characteristic. In the potential curve of CO,

the Hartree-Fock configuration is dominant at around the equilibrium distance, but

its weight decreases as the distance increases and finally becomes zero at the dis-

sociation limit. C2 has unoccupied pσ MO, therefore, the ground state is always

quasi-degenerate even in the equilibrium geometry. N2 includes triple-bond dissoci-
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Figure V: Potential curve of CO.

ation, therefore its potential curve is highly quasi-degenerate at large internuclear

distance. Be2 has no bonding interaction. Potential curves of these molecules were

calculated for R = 0.5 ∼ 5.0Å. Minimal STO-6G basis set was used and the 1s

orbitals were kept as frozen. The potential curves were shown in Figs. 5-8 and the

spectroscopic constants were given in table V.

As in other systems, DMVT(PQG) curves almost overlapped with the full-CI

curves, while DMVT(PQ) curves were calculated as repulsive. The deviations of

DMVT(PQG) from the full-CI increases in the order of N2, CO and C2. Though

it is true that the description of the quasi-degeneracy of C2 is difficult, there is

another factor in the accuracy. Since we used minimal basis set, the calculations of

N2 and CO were for 16 spin orbitals with 12 electrons, namely, 4 hole spin orbitals,

while those of C2 are for 16 spin orbitals with 10 electrons; 6 hole spin orbitals. We

think this also affected the accuracy of the results. The potential curve of Be2 was

repulsive, since van der Waals interaction was not described by the present basis

set. The DMVT(PQ) gave better description than other systems.
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Figure VI: Potential curve of C2.
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Figure VII: Potential curve of N2.

89



-29

-28.8

-28.6

-28.4

-28.2

-28

0.8 1 1.2 1.4 1.6 1.8 2

T
ot

al
 e

ne
rg

y(
au

)

Distance(Angstrom)

Hartree-Fock
DMVT(PQ)

DMVT(PQG)
Full-CI

Figure VIII: Potential curve of Be2.

The DMVT(PQG) results for the spectroscopic constants of these diatomic

molecules were less accurate than those for H2O and NH3. The deviations were

∼ 0.01Å and ∼ 80 cm−1 for re and ωe, respectively, for CO and N2. For C2, the

errors were as large as 0.04Å and 350cm−1. These results reflect the quality of the

DMVT around the equilibrium geometry.

We also calculated the Weinhold-Wilson inequalities for C2 and CO. As ex-

pected, large violations occurred for the inequalities VI and VII. For C2, the viola-

tions were calculated as −0.001810 ∼ −0.027667 and −0.000900 ∼ −0.011494 for

conditions VI and VII, respectively, at R = 1.5Å, and −0.003047 ∼ −0.002500 only

for condition VI at R = 5.0Å: the violations at R = 1.5Å were larger than those

at R = 5.0Å. The ground state of C2 is quasi-degenerate even at the equilibrium

geometry and this is the reason of the crude spectroscopic constants for C2 by the

DMVT(PQG). For CO, the violations ranged −0.008185 ∼ −0.008434 for condition

VI at the dissociation limit and −0.000546 for condition VI at R = 1.3Å. There

were no errors of conditions VII and VIII for CO.
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TABLE VI: Examination of size-consistency for Ne and H2O, NH3, BH3, Be2, CO,

and C2.

System Method Ea
mol Eb

atom ∆E

H2O DMVT(PQG) -75.4589 -75.4589 0.0000

Full-CI -75.4588 -75.4588 0.0000

NH3 DMVT(PQG) -55.6622 -55.6622 0.0000

Full-CI -55.6622 -55.6622 0.0000

BH3 DMVT(PQG) -25.8680 -25.8482 0.0198

Full-CI -25.8482 -25.8482 0.0000

Be2 DMVT(PQG) -29.1655 -29.1654 0.0001

Full-CI -29.1654 -29.1654 0.0000

CO DMVT(PQG) -112.1153 -112.1095 0.0058

Full-CI -112.1095 -112.1095 0.0000

C2 DMVT(PQG) -75.2187 -75.1854 0.0333

Full-CI -75.1854 -75.1854 0.0000

N2 DMVT(PQG) -108.4982 -108.4982 0.0000

Full-CI -108.4982 -108.4982 0.0000

a Energy of molecule at the dissociation limit.

b Sum of the energies of the isolated atoms.

4.3.5 Size-consistency

As we discussed in Sec II.C, the G-condition is very important for the size-consistent

property of the method. Here, we examine the size-consistency of the results. In

table VI, the total energy of the molecule in the dissociation limit and the sum of

the total energies of the isolated atoms are compared for H2O, NH3, BH3, N2, C2,

CO and Be2. For H2O, NH3 and N2, the total energies calculated by DMVT(PQG)

agree within numerical accuracy, which shows the size-consistency holds for these

systems. In these system, Weinhold-Wilson inequalities were also satisfied and the
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TABLE VII: Total energy for the model Hamiltonian, H = F + λV of Be and the

correlation energy in (%).

λ DMVT(PQ) DMVT(PQG) Full-CI Hartree-Fock

0.10 -10.5324(249) -10.5322(100) -10.5322(100) -10.5321(0)

0.50 -12.3365(226) -12.3317(100) -12.3317(100) -12.3278(0)

1.00 -14.6064(200) -14.5895(100) -14.5895(100) -14.5725(0)

2.00 -19.2097(151) -19.1600(100) -19.1596(100) -19.0619(0)

3.00 -24.1197(115) -24.0491(100) -24.0469(100) -23.5513(0)

4.00 -29.6662(139) -29.2180(101) -29.2115(100) -28.0407(0)

5.00 -37.1084(212) -34.7026(100) -34.6922(100) -32.5301(0)

10.00 -76.5823(165) -68.0991(100) -68.0414(100) -54.9771(0)

10000.0 -81838.44(102) -81294.14(100) -81290.74(100) -44904.03(0)

calculations were quite accurate. As seen from the potential curves, DMVT(PQ)

calculations gave miserable results from the standpoint of the size-consistency. The

G-condition is apparently indispensable for the size-consistent property. For other

systems, BH3, C2, CO and Be2, the size-consistency of DMVT(PQG) was not sat-

isfactory. This is because the G-condition is not a sufficient condition for the size-

consistency. Note that the Weinhold-Wilson inequalities VI and VII was not satis-

fied for these systems.

4.3.6 Artificially correlation enhanced system

It is interesting to see the performance of the present method for the strongly

correlated system. We here introduced the model Hamiltonian in which the electron

correlations are controlled by a parameter. The Hamiltonian is partitioned into F ,

Fock operator and the rest, V:

H = F + λV (4.17)
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TABLE VIII: Total energy for the model Hamiltonian, H = F + λV of H2O and

the correlation energy in (%).

λ DMVT(PQ) DMVT(PQG) Full-CI Hartree-Fock

0.10 -41.1669(234) -41.1664(100) -41.1664(100) -41.1661(0)

0.50 -56.5293(233) -56.5158(102) -56.5155(100) -56.5051(0)

1.00 -75.7953(232) -75.7310(104) -75.7290(100) -75.6789(0)

1.50 -95.1938(235) -95.0064(106) -94.9978(100) -94.8526(0)

2.00 -115.0471(222) -114.5560(115) -114.4863(100) -114.0264(0)

3.00 -155.4737(137) -154.6553(101) -154.6348(100) -152.3740(0)

4.00 -196.0891(124) -195.0768(101) -195.0347(100) -190.7215(0)

5.00 -236.8429(120) -235.6115(101) -235.5285(100) -229.0690(0)

10.00 -441.1663(116) -438.6811(102) -438.3447(100) -420.8068(0)

10000.0 -417093.18(124) -411089.69(102) -410645.30(100) -383512.82(0)

where λ is a real parameter that controls the strength of the electron correlations

and λ = 1 corresponds to the original Hamiltonian. We adopted Be and H2O and

changed λ form 0.1 ∼ 10000 and the results were shown in tables VII and VIII,

respectively.

For Be system, the DMVT(PQG) reproduced the exact correlation energy quite

accurately and the deviations were even-tempered for the variation of λ within 1%.

On the other hand, the DMVT(PQ) gave random errors for the variation of λ. For

H2O, the errors of the DMVT(PQG) became large, but, were within 15% relative

to the total electron correlations. The DMVT(PQG) calculations converged even

for the heavily correlated systems (λ = 10000), though the absolute errors were not

small.

We did not see the Weinhold-Wilson violations in the Be system for all λ. The

violations for H2O were not so simple. For λ = 1.0, the violations of the condition

VI occurred as −0.00054 ∼ −0.00368, but no violations occurred for λ = 2.0, which

has the largest correlation energy error in %. For λ = 10000, we got large violations
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as −0.00871 ∼ −0.001036.

4.4 Conclusion

The DMVT was applied to the calculations of the potential energy surfaces of the

atoms and small molecules, Ne, H4, H2O, NH3, BH3, CO, N2, C2 and Be2. This is the

first study in which the bond dissociation was properly described by the DMVT.

In the previous DET study of potential curves[26], the results were good up to

R ∼ 2Re, but at large distances, the calculations failed to converge. Generally, the

DMVT(PQG) calculation reproduced the full-CI curves very accurately and they

sometimes overlapped even in the dissociation limit, though the potential curves

for BH3 and C2 were less accurate than others. The quasi-degenerate states were

well described by the DMVT(PQG) calculations. On the other hand, the curves by

DMVT(PQ) were always repulsive, which showed the potential importance of the

G-condition.

We examined the size-consistency of the present method. The G-condition is

found to be related to the size-consistency of the method and shown to be essential to

the behavior of the potential curves of DMVT(PQG), especially in the dissociation

limit.

We also examined the Weinhold-Wilson inequalities for the 2-RDM of DMVT(PQG)

calculations where the results were less accurate, and found that the inequalities

VI and VII were violated. We think these inequalities may be new candidates for

the N -representability condition of the DMVT. Since these are linear conditions,

it would be easily included in the conditions of the DMVT relaxed with the SDP.

Such study is now in progress.
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Chapter 5.

Density Matrix variational theory: Strength of

Weinhold-Wilson inequalities

Abstract

We examine the strength of the Weinhold-Wilson (WW) inequalities for calculating

the second-order density matrix(2-RDM) by the density matrix variational theory

(DMVT) using the P , Q and G conditions as subsidiary conditions. We calculated

the 2-RDM of various molecular electronic states and found that some violations

of WW inequalities occur especially for the systems for which the DMVT(PQG)

calculations were less accurate. We then developed the DMVT method including

further the WW inequalities as the restrictive conditions, DMVT(PQG+WW), and

applied it to CH4, C2, CH2(
1A1) and H2O. The WW inequalities certainly improved

the results, but the improvement was not so remarkable.
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5.1 Introduction

As far as our world involves only up-to-two body elementary operators, this world

should be described solely by the second-order reduced density matrix (2-RDM).

Professor Löwdin not only did a lot of great works in this and related field[1, 2], but

also encouraged many young researchers. HN is one of such researchers and would

like to thank Professor Per-Olov Löwdin for his great contributions in the field of

quantum molecular science and his encouragement warmly given to him.

Recently, special attentions have been paid to the direct determination of the

reduced density matrix (RDM), which is called as density matrix theory(DMT).

This approach adopts the 2-RDM as the basic variable of quantum mechanics and

there are two formalisms in the DMT. One is based on the density equation[3],

which is equivalent to the Schrödinger equation in the necessary and sufficient sense.

This approach is called density equation theory (DET). Recent development of the

DET[4, 5, 6] has been remarkable and they have been summarized in the review

article [7]. The other is based on the Ritz variational principle expressed in terms

of the 2-RDM and is referred to as the density matrix variational theory (DMVT).

The quality of the calculated 2-RDM in the DMVT is dependent on how well we

can restrict our variable 2-RDM to be N -representable[8].

The DMVT method was first introduced by Garrod and Percus. They pro-

posed the variational method using P , Q and G conditions and some trivial N -

representability conditions[9], and applied it to the ground state of Be[10]. Erdahl

proposed to use convex programming for the DMVT and applied it to He2[11]. The

applications in these early studies were limited to very small systems. Recently,

Erdahl and Jin[12] developed the DMVT using 3-RDM as variable and applied it

to the model system of one-dimensional periodic lattice of electron pairs. Mazziotti

and Erdahl[13] examined the positive semidefinite condition of 3- and 4-RDMs for

solving the DMVT combined with the DET and calculated Lipkin model, namely,

a boson model of two-energy-level system.

In this series of our DMVT studies[14, 15], we could efficiently implement the

DMVT using the semidefinite programming algorithm (SDPA)[16], and successfully
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calculate the 2-RDMs of the ground states of many different spin-space symmetries

for many atoms and molecules. We also applied this method to the potential energy

surfaces of molecules and reproduced the full-CI curves in good approximation up

to the dissociation limit[15]; the G condition was found to be very important for

describing the dissociation limit.

Another promising approach was initiated by one of the authors[17]. Since

the exact Ψ is an eigen function of the Hamiltonian that has so simple structure

composed of only one- and two-body operators, the Ψ itself should also have a simple

structure reflecting this simplicity of the Hamiltonian. Some explicit expressions of

the structure of the exact wave function were given and the theories for the ground

and excited states was formulated. Applications were given to a simple model

system and to atoms and molecules.

For improving the DMVT(PQG) method developed previously[14, 15], we may

use some additional N -representability conditions. Some inequalities for the 2-

RDM were proposed by Weinhold and Wilson[18], Davidson[19] and McRae and

Davidson[20]. Since all of these inequalities can be written as linear conditions, it

is easy to include these conditions in our formalism. In our previous work[15], we

actually examined these inequalities for the resultant 2-RDM of the DMVT(PQG)

calculations and found that two linear inequalities were violated in some cases.

In this paper, we examine the Weinhold-Wilson (WW) inequalities for calculat-

ing the 2-RDM by the DMVT(PQG) method. Examinations have been done for all

the systems that were calculated in the previous studies[14, 15]. Then, we propose

an efficient formalism for including these conditions as the subsidiary conditions.

5.2 Theory and calculation

5.2.1 Definitions and basic algorithm

First and second order reduced density matrices (1-, 2-RDMs), γ and Γ, are defined

by:

γi
j = 〈Ψ|a†iaj|Ψ〉 (5.1)
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Γi1i2
j1j2 =

1

2
〈Ψ|a†i1a†i2aj2aj1|Ψ〉 (5.2)

where a† and a are creation and annihilation operators, respectively. Practical

complete N -representability condition is not known for the 2-RDM: we know only

some necessary conditions. In the present DMVT, we use P , Q, and G conditions.

The P , Q, and G-matrices are defined by,

P i1i2
j1j2 = 〈Ψ|a†i1a†i2aj2aj1|Ψ〉 (5.3)

Qi1i2
j1j2 = 〈Ψ|ai1ai2a

†
j2a

†
j1|Ψ〉 (5.4)

Gi1i2
j1j2 = 〈Ψ|a†i1ai2a

†
j2aj1|Ψ〉 (5.5)

respectively. We enforce all of these matrices to be positive semidefinite. We also use

seven trivial conditions of 2-RDM, which are antisymmetric condition, hermiticity,

trace condition, number of electrons, number of spins, and expectation values of Sz

and S2.

In the DMVT, we take 2-RDM as a variational variable, and minimize the energy

within N -representability conditions, namely,

Emin = Min
Γ∈P(2)

TrHΓ, (5.6)

where H is the Hamiltonian of the system, P(2) is a set of 2-RDM that sat-

isfy approximate or nearly complete N -representability condition. In the previ-

ous papers [14, 15], we performed two types of calculations using the approximate

N -representability conditions: the DMVT(PQ) adopts the trivial representabil-

ity conditions plus P and Q conditions as the approximate conditions, and the

DMVT(PQG) further includes G condition. In this work, we also include the

Weinhold-Wilson inequalities, and we call the method as the DMVT(PQG+WW)

method.

5.2.2 Weinhold-Wilson inequalities

The Weinhold-Wilson inequalities which are independent from P , Q, G, and 7 trivial

conditions are:
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Condition IV:

1− γi
i − γj

j + 2Γij
ij ≥ 0 (5.7)

Condition V:

γi
i − 2Γij

ij ≥ 0 (5.8)

Condition VI:

γi
i − 2Γij

ij − 2Γik
ik + 2Γjk

jk ≥ 0 (5.9)

Condition VII:

1− γi
i − γj

j − γk
k + 2Γij

ij + 2Γik
ik + 2Γjk

jk ≥ 0 (5.10)

Condition VIII: Positive semidefiniteness of the Ω matrix

Ω =




γ1
1 2Γ12

12 2Γ13
13 · · · 2Γ1t

1t γ1
1

2Γ12
12 γ2

2 2Γ23
23 · · · 2Γ2t

2t γ2
2

2Γ13
13 2Γ23

23 γ3
3 · · · 2Γ3t

3t γ3
3

...
...

...
...

...

2Γ1t
1t 2Γ2t

2t 2Γ3t
3t · · · γt

t γt
t

γ1
1 γ2

2 γ3
3 · · · γt

t 1




. (5.11)

Note that different definition is employed for Γ by factor 2. In this study, we

examined the 2-RDM by the DMVT(PQG) method with respect to these five in-

equalities, and we found that two types of conditions VI and VII were violated for

some systems. Therefore, we develop the DMVT method including these conditions.

5.2.3 DMVT method including Weinhold-Wilson inequali-

ties

Since all the Weinhold-Wilson inequalities are linear conditions, it is possible to

include all of these inequalities in the SDP formalism simultaneously. However,

the number of conditions becomes large since it scales as N3, and therefore we

enforce the inequalities only for those molecules for which the WW inequalities

were violated in the preceding DMVT(PQG) calculation. Then, the algorithm of

the DMVT (PQG+WW) is as follows:
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1. Standard DMVT(PQG) is executed.

2. Weinhold-Wilson inequalities of type IV∼ VIII are examined.

3. DMVT(PQG+WW) is performed with additional WW conditions if some of

the WW inequalities are violated.

The procedure of 2 and 3 is repeated until all the inequalities are satisfied. Note that

the inequality holds after it is included in the condition. Actually, this iteration is

necessary only for one or two times. As noted in section 2.2., the conditions VI and

VII were violated for the resultant 2-RDM calculated by the DMVT(PQG), and

therefore we developed the method of including only these two WW conditions. In

the DMVT method using SDPA, the conditions should be reduced to the standard

form and we introduce two types of constraint matrices CVI
ijk and CVII

ijk . In the

following, we employ the same notations as those in the previous paper[14]. In the

DMVT(PQG+WW) calculations, we extend the variable matrix Y given by Eq.

(3.25) of Ref.[14] as Y ′,

Y ′ =




P 0 0 0 0

0 Q 0 0 0

0 0 G 0 0

0 0 0 W VI 0

0 0 0 0 W VII




=




Y 0 0

0 W VI 0

0 0 W VII




(5.12)

where W VI, and W VII are the diagonal matrices and their diagonal elements are

given in the right hand sides of Eqs.(5.9) and (5.10), respectively.

We define the constraint matrix CVI
ijk by

(CVI
ijk)p1,p2,q1,q2 =





− 2
N−1

δi
p1

δi
q1

δp2
q2

+ 2δi
p1

δj
p2

δi
q1

δj
q2

+ 2δi
p1

δk
p2

δi
q1

δk
q2

− 2δj
p1

δk
p2

δj
q1

δk
q2

,

for 1 ≤ p1, p2, q1, q2 ≤ 3n,

1 for 3n+1 ≤ p1, p2, q1, q2 ≤ 3n+nVI,

0 otherwise

(5.13)
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and CVII
ijk by

(CVII
ijk )p1,p2,q1,q2 =





2
N−1

(
δi
p1

δi
q1

δp2
q2

+ δj
p1

δj
q1

δp2
q2

+ δk
p1

δk
q1

δp2
q2

)

− 2δi
p1

δj
p2

δi
q1

δj
q2

+ 2δj
p1

δk
p2

δj
q1

δk
q2

,

for 1 ≤ p1, p2, q1, q2 ≤ 3n,

1 for 3n+nVI+1 ≤ p1, p2, q1, q2 ≤ 3n+nVI +nVII,

0 otherwise,

(5.14)

where nVI and nVII are the numbers of the Weinhold-Wilson inequality conditions,

which were not satisfied in the previous iteration. The constants for constraints

CVI and CVII are all 0 and 1, respectively.

Then, these constraints work as

CVI
ijk • Y ′ =

∑
p1p2q1q2

(− 2

N − 1
δi
p1

δi
q1

δp2
q2

+ 2δi
p1

δj
p2

δi
q1

δj
q2

+2δi
p1

δk
p2

δi
q1

δk
q2
− 2δj

p1
δk
p2

δj
q1

δk
q2

)Y p1p2
q1q2

+ (W VI)ijk

= −∑
p2

2

N − 1
Γip2

ip2
+ 2Γij

ij + 2Γik
ik − 2Γkj

kj + (W VI)ijk

= −γi
i + 2Γij

ij + 2Γik
ik − 2Γkj

kj + (W VI)ijk

= 0 (5.15)

and

CVII
ijk • Y ′ =

∑
p1p2q1q2

(
2

N − 1

(
δi
p1

δi
q1

δp2
q2

+ δj
p1

δj
q1

δp2
q2

+ δk
p1

δk
q1

δp2
q2

)

− 2δi
p1

δj
p2

δi
q1

δj
q2
− 2δi

p1
δk
p2

δi
q1

δk
q2

− 2δj
p1

δk
p2

δj
q1

δk
q2

)Y p1p2
q1q2

+ (W VII)ijk

= γi
i + γj

j + γk
k − 2Γij

ij − 2Γik
ik − 2Γkj

kj + (W VII)ijk

= 1, (5.16)

since (W VI)ijk and (W VII)ijk are

(W VI)ijk = γi
i − 2Γij

ij − 2Γik
ik + 2Γjk

jk

(W VII)ijk = 1− γi
i − γj

j − γk
k + 2Γij

ij + 2Γik
ik + 2Γjk

jk. (5.17)
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We further antisymmetrize the indices i1 ↔ i2 and j1 ↔ j2, hermitize the indices

(i1, i2) ↔ (j1, j2) to be suitable for the SDPA formalism, and pack the elements to

remove unnecessary variables.

The resultant SDP formalism of the DMVT(PQG+WW) method is now given

by, 



Minimize H • Y ′

subjected to F i • Y ′ = ci

Ẽ
i1i2
j1j2

• Y ′ = δi1
j1δ

i2
j2 − δi1

j2δ
i2
j1

J̃
i1i2
j1j2

• Y = 0,

CVI
ijk • Y ′ = 0,

CVII
ijk • Y ′ = 1.

(5.18)

where the matrices of F i, Ẽ, and J̃ are defined in ref.[14].

5.3 Results

First we examined the Weinhold-Wilson inequalities for the 2-RDM obtained by the

DMVT(PQG) calculations. We calculated the various electronic states of molecules,

which were studied in the previous works[14, 15]. For N2, CO, BH3 and H2O, the

examinations were performed at both the equilibrium geometry and dissociation

limit. In table I, we presented the results of the number of the violated conditions

whose absolute errors were lager than 1 × 10−5 together with the DMVT(PQG)

and full-CI energies. The violation occurred for the conditions VI and VII in some

cases, while the conditions IV and V and VIII held for all the electronic states. For

all the other atoms and molecules which were calculated in the previous paper and

were not included in table I, all of these inequalities were correctly held. As seen in

table I, when the DMVT(PQG) calculations are less accurate, the violation of the

inequalities becomes large: the number of violations are large for BH3, CH2(
1A1),

C2 and CH4.

We also calculated the artificially correlation enhanced system, introduced in the

previous study[15]: namely, the Hamiltonian is partitioned into F , Fock operator
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TABLE I: Number of violated Weinhold-Wilson inequalities for the 2-RDM deter-

mined by DMVT(PQG), whose absolute errors are larger than 1× 10−5.

System State Violation DMVT(PQG) FullCI

BH3
a 1A1 VI: 12, VII: 12 -26.3926(120) -26.3822(100)

BH3
b 1A1 VI: 14, VII: 6 -25.8678(103) -25.8482(100)

C2
a 1Σ VI: 16, VII: 32 -75.4793(117) -75.4340(100)

C2
b 1Σ VII: 4 -75.2187(105) -75.1855(100)

CO a 1Σ No -112.4544(108) -112.4426(100)

CO b 1Σ VI: 12 -112.1156(102) -112.1096(100)

N2
a 1Σ+

g VI: 4 -108.7123(108) -108.7002(100)

N2
b 1Σ+

g No -108.4982(100) -108.4982(100)

H2O
a 1A1 VI: 6 -75.7310(104) -75.7290(100)

H2O
b 1A1 No -75.4589(100) -75.4589(100)

BH2
2A1 VII: 6 -25.7089(115) -25.7032(100)

CH+ 1Σ+ VI: 8 -37.8896(107) -37.8853(100)

CH− 3Σ− VII: 2 -37.9714(99) -37.9718(100)

CH 2Π VI: 2 -38.1916(111) -38.1871(100)

CH2
1A1 VI: 14, VII: 17 -38.8228(119) -38.8110(100)

CH2
3B1 VI: 2, VII: 4 -38.8556(107) -38.8534(100)

CH2(linear) 3Σ−
u VI: 10, VII: 8 -38.8358(103) -38.8342(100)

FH+
2

1A1 VI: 8 -99.8305(103) -99.8294(100)

H2O
+ 2A1 VI: 5 -75.4218(106) -75.4192(100)

NH2
2A1 VI: 4, VII: 8 -55.3570(111) -55.3525(100)

NH2
2B1 VI: 1, VII: 3 -55.4195(108) -55.4157(100)

CH4
1A1 VI: 30, VII:24 -40.2030(124) -40.1905(100)

a At equilibrium geometry

b At dissociation limit
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TABLE II: Number of violated Weinhold-Wilson inequalities for the 2-RDM of H2O

determined by DMVT(PQG), whose absolute errors are larger than 1× 10−5.

λ Violation DMVT(PQG) FullCI

0.5 VI: 8 -56.5158(102) -56.5155(100)

1.0 VI: 6 -75.7310(104) -75.7290(100)

1.5 VI: 8 -95.0064(106) -94.9978(100)

λ > 1.5 No - -

and the rest, V as:

H = F + λV, (5.19)

where λ is a real parameter that controls the strength of the electron correlation.

Using this Hamiltonian, the DMVT(PQG) calculations were performed for H2O and

the results for some λ were summarized in table II. The violations have occurred

for the condition VI and they were large for λ = 1.5. Note that no violation has

occurred for large λ.

We examined the violations in details for C2, CH2(
1A1) and CH4 and artificially

correlation enhanced system with λ = 1.5 of H2O.
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In tables III∼ VI, we listed the violations with the indices and values, whose

absolute value is larger than 1 × 10−5 for C2, CH4 and H2O at the equilibrium

geometry. As seen in table III, large violations occurred for both conditions VI

and VII for C2: the largest values were in the order of 1 × 10−2. The violations

mainly occurred for the valence orbitals, which are pσ, pπ and pπ∗ orbitals, except

for some violations with respect to the 1s orbital for condition VI. The violation of

conditions VI and VII was also found for the 1A1 state of CH2. In this case, the

violation occurred for the variable for the valence orbitals and not for the 1s core

orbitals. In the case of CH4, the order of the violations was smaller and the absolute

errors were within 2.1× 10−3 as shown in table V. In this case, the violations were

also found for the 1s orbital of C. For H2O with artificially correlation enhanced

Hamiltonian of λ = 1.5, the violations occur only for the condition VI. The errors

are calculated to be very small: the order is 1× 10−4. As shown in these examples,

the absolute values of the violations are related to the accuracy of the DMVT(PQG),

which indicates that these conditions may be effective as the necessary conditions

for the DMVT method.

We performed, therefore, the DMVT(PQG+WW) calculations including these

two WW conditions. The results were presented in table VII. The largest improve-

ment was obtained for C2 as expected, but it was not so drastic as 7.2× 10−4 au in

total energy. The deviation from the full-CI value is still large. For other systems,

CH2(
1A1), CH4 and H2O, the effect of these conditions was not so prominent and

the improved energies were 1.7 × 10−4, 9.0 × 10−5 and 1.0 × 10−5 au, respectively.

These N -representability conditions actually improved the results, however, did not

effectively work at least in the combination with the DMVT(PQG) calculation.
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TABLE VI: Violation of condition VI for H2O with various λ

λ = 0.50

(i, j, k) violation (i, j, k) violation

(5, 4, 5) −1.05× 10−5 (5, 4, 5) −9.78× 10−6

(5, 5, 7) −6.82× 10−6 (5, 5, 7) −6.43× 10−6

(5, 2, 5) −4.94× 10−6 (5, 2, 5) −4.79× 10−6

(5, 5, 6) −4.47× 10−6 (5, 5, 6) −4.12× 10−6

λ = 1.00

(i, j, k) violation (i, j, k) violation

(5, 4, 5) −7.52× 10−5 (5, 4, 5) −7.46× 10−5

(5, 2, 5) −4.25× 10−5 (5, 2, 5) −4.15× 10−5

(5, 5, 6) −3.40× 10−6 (5, 5, 6) −2.53× 10−6

λ = 1.50

(i, j, k) violation (i, j, k) violation

(5, 2, 5) −3.69× 10−4 (5, 2, 5) −3.68× 10−4

(5, 3, 5) −3.00× 10−4 (5, 3, 5) −2.99× 10−4

(5, 4, 5) −1.83× 10−4 (5, 4, 5) −1.81× 10−4

(5, 5, 6) −5.63× 10−5 (5, 5, 6) −5.44× 10−5

TABLE VII: Total energy by DMVT(PQG), DMVT(PQG+WW), and FullCI.

DMVT(PQG) DMVT(PQG+WW) ∆Ea FullCI

CH4, STO-6G, 1s core -40.20999 -40.20990 9.0×10−5 -40.19049

C2, STO-6G, 1s core -75.47932 -75.47860 7.2×10−4 -75.43398

H2O(λ = 1.50), STO-6G -95.00638 -95.00637 1.0×10−5 -94.99780

CH2(
1A1), STO-6G -38.82261 -38.82278 1.7×10−4 -38.81099

a Improvement by including Weinhold-Wilson conditions.
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5.4 Conclusion

We examined the Weinhold-Wilson inequalities for the 2-RDM determined by the

DMVT(PQG) method. The violations of the conditions VI and VII were found

for some electronic states of several molecules, though they were not so large; the

largest error was in the order of 1 × 10−2. We therefore developed the formal-

ism of the DMVT including these inequalities for the SDPA, which is denoted

as DMVT(PQG+WW). These conditions certainly improved the results, however,

they were not so drastic; the largest improvement was in the order of mhartree.

These conditions were not so effective at least for the DMVT method including P ,

Q and G conditions.
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Part III.

Accurate theoretical spectroscopy on ionization spectra





Chapter 6.

Outer-valence ionization spectra of azines:

pyrazine, pyridazine, pyrimidine, and s-triazine

studied by the SAC-CI SD-R method

Abstract

The valence ionization spectra of pyrazine, pyridazine, pyrimidine, and s-triazine

have been studied by the SAC-CI (symmetry-adapted-cluster configuration-interaction)

method. Experimental photoelectron spectra of these molecules were accurately re-

produced and the detailed characterization of both the main peaks and satellites

was performed. The ordering of the main peaks, some of which were contradictory

proposed in the previous works, was examined by the SAC-CI method. Low-lying

satellite peaks in the energy region of 18 ∼ 20 eV were analyzed in detail. In this

region, some satellites with considerable intensity were calculated for pyrazine and

pyridazine, while no remarkable satellite peaks were obtained for pyrimidine and s-

triazine in agreement with the recent experimental work by the Penning ionization

electron spectrum (PIES) and He I ultraviolet photoelectron spectrum (UPS). In

the higher-energy region above 20 eV, the remarkable breakdown of the Koopmans’

picture was seen for all the azines and numerous shake-up states were obtained as

the continuous band. And systematic explanation for a correlation peak at 24∼30eV

for position and the number of nitrogen atom. We also analyzed the breakdown of

Koopmans’ theorem, why ionized from n orbitals gets much more correlation energy

than ionized from π orbitals.
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6.1 Introduction

Recently, valence ionization spectrum of molecules has been extensively studied

in both the experimental and theoretical works and the detailed assignment has

become possible not only for the main peaks but satellite peaks. The accurate

characterization of the spectrum has been achieved by the cooperative interplay of

these works; since the correlation peaks are described by the more-than-two electron

processes, theoretical information is indispensable for the detailed assignments of

these peaks.

Azabenzenes are important parent molecules for the biological compounds such

as nicotinic acid and the nucleotides cytosine, uracil, and thymine, and therefore

have been the subject of extensive experimental and theoretical studies[1-28] Az-

abenzenes are also of interest since they are isoelectronic compounds of benzene.

The nitrogen atoms introduce perturbations to the benzene energy levels and give

rise to characteristic valence electronic structure due to their lone pair electrons.

In particular, their lower excitation n → π∗ and π → π∗ may contribute the satel-

lites in the ionization spectra. In this sense, their valence electronic structure has

been extensively investigated, however, there are still contradictory assignments

even for the main peaks. In the early studies, the valence ionization spectra of

pyrazine, pyridazine, pyrimidine, and s-triazine were measured by He II photoelec-

tron spectra[13-16]up to ∼ 25eV. Recently, the Penning ionization electron spec-

troscopy (PIES) and the He I ultraviolet photoelectron spectroscopy (UPS)[17] were

applied to these spectra and the assignment of the main peaks were proposed by the

collision energy dependence of the partial ionization cross sections (CEDPICS) with

the help of ab initio interaction potential and trajectory calculations. In that study,

some satellite peaks were identified in the energy region of 18 ∼ 20 eV, though the

energy region was limited up to ∼20 eV.

Theoretically, the valence ionized states of these molecules have been investi-

gated by the Green’s function method of the 2ph-TDA [1], and the 2h-1p CI[3]

calculations for s-triazine and pyrazine. In those studies, satellite peaks were also

calculated, however, the shape of the theoretical spectra was different from the ex-
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periment in some points, and therefore the detailed assignment of them was still not

definitive. Outer-valence Green’s function (OVGF) method[2] and the P3 method

[9] were also applied to the outer-valence region to determine the order of the main

peaks. However, there are still different assignment between theoretical and exper-

imental works even for the main peaks.

In the series of the studies, we have investigated the valence ionization spectra of

various molecules using the SAC-CI (symmetry-adapted-cluster configuration- in-

teraction) method. The SAC/SAC-CI method[29-31] has been successfully applied

to a number of molecular spectroscopies[32-37] including the ionization spectrum.

In this study, we apply the SAC-CI method to the valence ionization spectra of

three diazines; pyrazine, pyridazine, pyrimidine, and s-triazine to give the accurate

assignments not only for the main peaks but for the satellites, and systematic expla-

nation of satellite peak at 24∼30eV by position and number of nitrogen atoms. We

also analyzed ionized from n orbital tend to include more correlation energy than

neutral molecule as usually observed by breakdown of the Koopmans’ theorem:

inversion of ionization order from n and π orbital.

6.2 Computational details

The ionization process studied in this work is vertical in nature. The geometries

of the molecules were due to the experimental ones from literature for s-triazine

[38], pyrazine [39], pyrimidine [40] and pyridazine[41]. The molecular structure of s-

triazine belongs to D3h, those of pyrazine and pyridazine to C2v and that of pyrazine

to D2h. The DZ1P basis set was adopted for all the molecules; [4s2p1d/2s1p] of

Huzinaga-Dunning [42]. The resultant SCF dimensions were 110 for diazine and

105 for s-triazine.

The valence ionization spectra of these molecules were calculated by the SAC-

CI method in the outer-valence region to interpret the spectra measured by the

He I UPS, He II UPS, and PIES. In the SAC-CI calculation, single and double

R-operators were adopted, namely SAC-CI SD-R method was used. The 1s orbitals

of C, N and O were kept as frozen core and all the other MOs were included in
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the active space; the active space of the SAC-CI consisted of 15 occupied and 89

unoccupied MOs for diazine and 15 occupied and 85 unoccupied MOs for s-triazine.

The SAC-CI calculations were performed in the linear point group; C2v was adopted

for s-triazine.

To reduce the computational effort, perturbation selection [34] was performed in

the state-selection scheme and the thresholds of the normal accuracy were adopted.

In the SAC ground-state calculation, the energy threshold for selecting doubles was

λe = 1 × 10−6. For unlinked terms, we include only the products of the double-

excitation operators when the SDCI coefficients were larger than 0.005. In the

SAC-CI calculations for the ionized states, Koopmans states were adopted as the

reference states and the energy threshold for R-operators was of λe = 1 × 10−7.

The thresholds of the CI coefficients for calculating the unlinked operators in the

SAC-CI method are 0.05 and 1× 10−3 for the R and S operators, respectively.

Ionization cross-sections were calculated using the monopole approximation [44,

45] to estimate the relative intensities of the peaks. Both initial- and final-state

correlation effects are included.

The SAC/SAC-CI calculations were executed using the SAC96 program system

[46], which has been incorporated into the development version of the Gaussian

suite of programs [47].

6.3 Results and discussions

The SCF energies of these molecules were calculated to be −262.7279, −262.6943,

−262.7374 and −278.7416 au for pyrazine, pyridazine, pyrimidine, and s-triazine,

respectively, with the present basis set of DZ1P. The Hartree-Fock orbital sequences

of the valence MOs were summarized for these diazines and s-triazine in Table I.
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Figure I: Structure and coordinate

pyrazine
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The valence ionization spectra of these molecules were intensively studied by the

PIES and He I UPS by Kishimoto et al.[17] In that work, the observed peaks were

assigned in terms of the behavior of the CEDPICS measured by the PIES , the ab

initio potential energy surfaces and the trajectory calculations. In Figs. II-V, we

compared our theoretical ionization spectra of these molecules with the He I UPS

spectra: the resolution of the peaks of the He I UPS seems to be better than the

PIES and the intensity of the PIES is characteristic for the nature of the peaks and

the interaction between the ionizing MOs and He* atom determines the intensity.

The theoretical spectrum was convoluted with Gaussian envelope for describing the

Frank-Condon width and the resolution of spectrometer; the fwhm() of Gaussian

was taken to 0.05 × ∆E (in eV). In Figs. VI-XI, we show valence MO with its

pictures and orbital energy for azabenzens.
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Figure II: Outer-valence ionization spectra of pyrazine by (a) He I PES and (b)

SAC-CI SD-R

� ��� ��� ��� ���

	 

� �


�
� �

���������������

FIG. 2.  Outer-valence ionization spectra of pyrazine by 
(a) He I UPS and (b) SAC-CI

(b) SAC-CI
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Figure III: Outer-valence ionization spectra of pyridazine by (a) He I PES and (b)

SAC-CI SD-R
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FIG. 4.  Outer-valence ionization spectra of pyridazine 
by (a) He I UPS and (b) SAC-CI

(b) SAC-CI

(a) He I UPS
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Figure IV: Outer-valence ionization spectra of pyrimidine by (a) He I PES and (b)

SAC-CI SD-R
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FIG. 3.  Outer-valence ionization spectra of pyrimidine 
by (a) He I UPS and (b) SAC-CI

(b) SAC-CI

(a) He I UPS
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Figure V: Outer-valence ionization spectra of s-triazine by (a) He I PES and (b)

SAC-CI SD-R
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FIG. 1.  Outer-valence ionization spectra of s-triazine by 
(a) He I UPS and (b) SAC-CI

(b) SAC-CI

(a) He I UPS
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TABLE II: Calculated ionization potentials (IP, in eV), monopole intensities (M.I.),

and main configurations with the basis set for pyrazine.

Sym. Main Configuration(|C| > 0.3) M.I. IP Expt.a,b Expt.c P3d,b CIe

Ag 0.95(6ag
−1) 0.7624 9.49 9.4 9.61 9.788 9.01

B1g 0.97(1b1g
−1) 0.7906 10.06 10.2 10.20 10.290 10.08

B1u 0.94(5b1u
−1) 0.7381 11.30 11.4 11.38 11.573 10.84

B2g 0.96(1b2g
−1) 0.7710 11.64 11.7 11.80 12.013 11.65

B3g 0.96(3b3g
−1) 0.7735 13.90 13.3 13.37 13.984 14.00

B3u 0.92(1b3u
−1) 0.7168 14.43 14.0 13.93 14.441 13.87

B2u 0.95(4b2u
−1) 0.7564 15.30 15.0 14.98 15.229 14.11

B1u 0.94(4b1u
−1) 0.7413 17.02 16.2 16.10 16.791 16.32

B2u 0.91(3b2u
−1)+0.31(1b1g

−12b3u6ag
−1) 0.6950 17.25 ∼ 17 16.58 17.467 17.03

Ag 0.92(5ag
−1) 0.7179 17.67 ∼ 17 16.97 17.747 16.21

B2u 1.01(6ag
−12b3u1b1g

−1)+0.71(1b1g
−12b3u6ag

−1) 0.0411 18.31 ∼ 18 ∼ 18.0

B3g 0.91(5b1u
−12b3u1b1g

−1)+0.81(1b1g
−12b3u5b1u

−1)−0.41(6ag
−12b2g1b1g

−1) 0.0131 19.42

−0.38(1b1g
−12b2g6ag

−1)

B2u 0.68(1b1g
−12b3u6ag

−1)−0.33(6ag
−12b3u1b1g

−1) 0.0212 19.82

B3u 0.88(1b1g
−12b3u1b1g

−1)+0.39(1b2g
−11au1b1g

−1) 0.0226 20.29

B3g 0.51(1b1g
−12b3u5b1u

−1)−0.45(5b1u
−12b3u1b1g

−1) 0.0607 20.98

Ag 0.76(4ag
−1)+0.44(5b1u

−11au1b1g
−1) 0.4956 21.62 20.6 ∼ 19.1

B3g 0.86(2b3g
−1) 0.6205 21.77 ∼ 21

Ag 0.70(5b1u
−11au1b1g

−1)−0.58(6ag
−12b3u1b3u

−1)−0.44(1b3u
−12b3u6ag

−1) 0.1508 21.82

−0.42(4ag
−1)+0.30(1b1g

−11au5b1u
−1)

Ag 0.51(1b3u
−12b3u6ag

−1)−0.51(1b2g
−12b3u5b1u

−1)+0.35(1b1g
−11au5b1u

−1) 0.0115 22.97

B1u 0.58(1b1g
−11au6ag

−1)+0.47(1b2g
−12b3u6ag

−1)−0.44(1b3u
−12b3u5b1u

−1) 0.0161 23.14

B3u 0.68(1b2g
−11au1b1g

−1)+0.50(1b2g
−12b3u1b2g

−1) 0.0157 23.37

Ag 0.58(5b1u
−12b3u1b2g

−1)−0.57(6ag
−12b2g1b2g

−1)+0.48(6ag
−12b3u1b3u

−1) 0.0235 23.85

+0.34(4b2u
−12b3u1b1g

−1)+0.30(5b1u
−11au1b1g

−1)

B3u 0.85(1b1g
−11au1b2g

−1)+0.39(1b2g
−12b3u1b2g

−1)−0.31(6ag
−11au3b3g

−1) 0.0259 24.26

B2u 0.77(1b2g
−11au6ag

−1)−0.32(1b3u
−11au5b1u

−1)+0.32(3b3g
−12b3u1b2g

−1) 0.0343 24.28

B1u 0.78(1b1g
−12b3u3b3g

−1)+0.46(1b2g
−11au3b3g

−1) 0.0152 24.64

B2u 0.59(2b2u
−1)−0.46(1b1g

−11au3b3g
−1)+0.36(1b2g

−12b3u3b3g
−1) 0.2913 24.95 ∼ 24

B2u 0.46(1b1g
−11au3b3g

−1)+0.43(2b2u
−1)−0.38(5b1u

−12b2g1b1g
−1) 0.1584 25.75

+0.35(5ag
−12b3u1b1g

−1)−0.31(4b2u
−12b3u1b3u

−1)

Ag 0.63(1b2g
−11au4b2u

−1)+0.54(4b2u
−11au1b2g

−1)−0.37(4b2u
−12b3u1b1g

−1) 0.0246 25.91

−0.36(4b1u
−11au1b1g

−1)−0.31(1b1g
−11au4b1u

−1)

B2u 0.46(5ag
−12b3u1b1g

−1)−0.45(1b1g
−11au3b3g

−1)−0.43(2b2u
−1) 0.1569 26.06

−0.39(5b1u
−12b2g1b1g

−1)−0.38(4b2u
−12b3u1b3u

−1)

B3g 0.57(1b1g
−11au4b2u

−1)−0.30(1b1g
−12b2g6ag

−1)+0.30(1b2g
−11au5b1u

−1) 0.0135 26.38

B2u 0.65(1b2g
−12b3u3b3g

−1) 0.0126 27.07

Ag 0.45(1b1g
−12b3u3b2u

−1)−0.34(1b2g
−12b2g6ag

−1) 0.0267 27.18

B1u 0.56(1b2g
−11au3b3g

−1) 0.0231 27.19

Ag 0.73(1b1g
−18ag1b1g

−1) 0.0103 27.28

CONTINUE
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CONTINUED

B2u 0.69(1b1g
−16b2u1b1g

−1)−0.49(1b1g
−15b2u1b1g

−1) 0.0176 27.38

B1u 0.40(1b3u
−12b2g6ag

−1)−0.35(5b1u
−12b2g1b2g

−1)−0.35(1b2g
−11au3b3g

−1) 0.0159 27.47

B1u 0.48(1b1g
−16b1u1b1g

−1)−0.31(1b1g
−17b1u1b1g

−1)+0.30(1b3u
−12b3u5b1u

−1) 0.0501 27.73

Ag 0.53(6ag
−18ag6ag

−1) 0.0108 27.77

B1u 0.47(6ag
−16b1u6ag

−1)+0.31(6ag
−18ag4b1u

−1) 0.0130 28.10

Ag 0.47(1b1g
−11au4b1u

−1)−0.40(1b2g
−11au4b2u

−1)+0.36(1b1g
−12b3u4b2u

−1) 0.0140 28.57

B1u 0.62(6ag
−17b1u6ag

−1)+0.39(6ag
−16b1u6ag

−1) 0.0486 28.64

B1u 0.46(1b1g
−11au5ag

−1)+0.43(3b1u
−1) 0.1600 28.87

B1u 0.50(4b2u
−11au1b3u

−1)+0.41(1b3u
−11au4b2u

−1)−0.37(4b1u
−12b3u1b3u

−1) 0.0501 29.15

+0.35(4b2u
−12b2g1b1g

−1)

Ag 0.53(1b2g
−12b2g6ag

−1)+0.47(1b1g
−12b3u4b2u

−1)+0.35(1b1g
−12b3u3b2u

−1) 0.0188 29.17

B1u 0.38(1b1g
−17b1u1b1g

−1)−0.35(1b2g
−16b2u1b1g

−1)+0.33(1b1g
−11au5ag

−1) 0.0472 29.33

+0.30(1b1g
−16b1u1b1g

−1)

B1u 0.46(4b2u
−11au1b3u

−1)+0.35(4b2u
−12b2g1b1g

−1)−0.34(1b1g
−17b1u1b1g

−1) 0.0223 29.53

+0.32(6ag
−12b2g1b3u

−1)+0.30(4b1u
−12b3u1b3u

−1)

B1u 0.55(5ag
−12b3u1b2g

−1)−0.39(6ag
−12b2g1b3u

−1)+0.31(1b2g
−12b2g5b1u

−1) 0.0609 29.61

Ag 0.70(1b2g
−17ag1b2g

−1)+0.33(1b2g
−14b3g1b1g

−1) 0.0140 29.62

B1u 0.50(1b1g
−17b1u1b1g

−1)−0.47(1b2g
−15b2u1b1g

−1)+0.32(4b1u
−12b3u1b3u

−1) 0.0250 29.73

B1u 0.45(1b2g
−15b2u1b1g

−1)−0.34(2b3g
−12b3u1b1g

−1)+0.34(4b1u
−12b3u1b3u

−1) 0.0290 29.94
a Ref. [14], b Principal axis is different from original ones, so that two character b1g , and b1u are changed to b3g , and b3u,

respectively., c Ref. [17], d Ref. [9], e Ref. [6]

In Tables II-IV, the results of IPs, monopole intensities, and detailed ionization

characters for the valence ionized states, which have large intensity greater than

0.005 were presented with the IPs of the He I UPS [17], He II UPS [13, 14, 15, 16]

and other theoretical results [5, 6, 7, 8, 9]

6.3.1 pyrazine

Ten main peaks were observed in the outer-valence region of pyrazine by the He

I UPS. Our assignment is consistent with that of the PIES experiment [17]. First

four peaks observed at 9.61, 10.20, 11.38 and 11.80 eV[17] were assigned to the

ionizations from the outer three MOs, 6ag, 1b1g, 5b1u and 1b2g, respectively. The

present calculation computed the IPs of these states at 9.49, 10.06, 11.30 and 11.64

eV. The next continuous three peaks observed at 13.37, 13.93, and 14.98 eV [17]

were attributed to the (3b−1
3g ), (1b−1

3u ), and (4b−1
2u ) states and were calculated at

13.90, 14.43, and 15.30 eV, respectively. These seven ionized states were dominantly

described by the one-electron process and their monopole intensities were large.

135



TABLE III: Calculated ionization potentials (IP, in eV), monopole intensities

(M.I.), and main configurations with the basis set for pyridazine.

Sym. Main Configuration(|C| > 0.3) M.I. IP Expt.a Expt.b P3c CId

B2 0.95(8b2
−1) 0.7621 9.14 9.3 9.27 9.284 8.523

A2 0.97(1a2
−1) 0.7943 10.57 10.5 10.61 10.853 10.697

B1 0.97(2b1
−1) 0.7905 11.02 11.3 11.2 11.287 10.872

A1 0.93(10a1
−1) 0.7593 11.29 11.3 11.3 11.656 10.679

B1 0.93(1b1
−1) 0.7257 14.44 13.8 13.97 14.554 13.776

A1 0.93(9a1
−1) 0.7675 14.48 14.2 14.27 14.519 13.367

B2 0.95(7b2
−1) 0.7674 14.95 14.8 14.66 14.880 14.239

0.94(6b2
−1) 0.7555 16.76 15.9 15.90 16.517 16.502

A1 0.93(8a1
−1) 0.7360 17.13 17.0 16.8 17.390 16.888

0.73(7a1
−1)−0.57(8b2

−12a22b1
−1)−0.38(2b1

−12a28b2
−1) 0.4802 17.99 17.4 17.43 17.959 17.300

0.81(8b2
−12a22b1

−1)+0.56(7a1
−1)+0.43(2b1

−12a28b2
−1) 0.2650 18.24

−0.32(8b2
−13b11a2

−1)

A1 0.88(8b2
−13b11a2

−1)+0.46(1a2
−13b18b2

−1)+0.37(2b1
−12a28b2

−1) 0.0165 19.51

0.51(1a2
−12a28b2

−1)+0.37(2b1
−13b18b2

−1) 0.0104 20.11

A1 0.57(2b1
−12a28b2

−1)−0.42(10a1
−12a21a2

−1)+0.37(1b1
−12a28b2

−1) 0.0207 20.36

−0.32(1a2
−13b18b2

−1)

A1 0.64(10a1
−12a21a2

−1)+0.49(1a2
−12a210a1

−1)−0.47(8b2
−12a21b1

−1) 0.0309 20.56

−0.39(8b2
−13b11a2

−1)

A1 0.61(6a1
−1)−0.40(1a2

−13b18b2
−1)+0.36(10a1

−12a21a2
−1) 0.3169 21.44 20.7

B2 0.61(5b2
−1)−0.33(2b1

−12a210a1
−1) 0.3351 21.62 20.7

B2 0.75(10a1
−13b11a2

−1)+0.52(10a1
−12a22b1

−1)+0.37(1a2
−13b110a1

−1) 0.0654 21.77

+0.34(10a1
−12a21b1

−1)

A1 0.64(6a1
−1)+0.39(1a2

−13b18b2
−1)+0.33(1a2

−12a210a1
−1) 0.3553 21.93

B2 0.58(5b2
−1)+0.31(2b1

−12a210a1
−1)−0.31(1a2

−13b110a1
−1) 0.2880 22.09

B1 0.90(2b1
−12a21a2

−1)+0.48(1a2
−12a22b1

−1)+0.41(1a2
−13b11a2

−1) 0.0466 22.60

B2 0.63(2b1
−12a210a1

−1)−0.53(2b1
−13b18b2

−1) 0.0137 23.33

A1 0.59(2b1
−13b110a1

−1) 0.0110 24.40

B2 0.72(1a2
−13b110a1

−1) 0.0121 24.41

A1 0.74(6b2
−13b11a2

−1)−0.60(6b2
−12a22b1

−1)+0.42(1a2
−13b16b2

−1) 0.0276 25.07

−0.34(2b1
−12a26b2

−1)

A1 0.58(1a2
−12a29a1

−1) 0.0148 25.10

B1 0.72(2b1
−13a21a2

−1)+0.70(1a2
−13a22b1

−1)+0.44(1a2
−12a21b1

−1) 0.0217 25.42

−0.39(2b1
−13b11b1

−1)+0.31(1b1
−12a21a2

−1)−0.31(1b1
−13b12b1

−1)

B2 0.52(6b2
−13b12b1

−1)+0.44(2b1
−13b16b2

−1)+0.34(8b2
−13b11b1

−1) 0.0125 25.68

−0.31(8a1
−12a22b1

−1)−0.30(7b2
−13b12b1

−1)

B2 0.53(8a1
−13b11a2

−1)−0.44(8a1
−12a22b1

−1)+0.38(4b2
−1) 0.1276 26.12

+0.31(1a2
−13b18a1

−1)

A1 0.35(1a2
−13b17b2

−1)−0.34(2b1
−12a27b2

−1) 0.0128 26.14

A1 0.48(6b2
−12a22b1

−1)−0.38(2b1
−12a27b2

−1)+0.30(9a1
−13b11b1

−1) 0.0136 26.34

A1 0.55(5a1
−1)+0.37(2b1

−13a28b2
−1) 0.2643 26.40
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B2 0.36(1a2
−12a26b2

−1)+0.35(2b1
−13b16b2

−1)−0.34(2b1
−13b17b2

−1) 0.0332 26.55

A1 0.41(7a1
−12a21a2

−1)+0.36(7b2
−12a21b1

−1)+0.33(9a1
−13a21a2

−1) 0.0145 26.63

+0.31(1a2
−12a27a1

−1)

A1 0.44(7b2
−12a21b1

−1)+0.41(7a1
−12a21a2

−1)−0.39(1a2
−13b17b2

−1) 0.0197 26.69

+0.31(1a2
−12a28a1

−1)−0.30(1b1
−12a28b2

−1)

B2 0.61(4b2
−1) 0.3201 26.79

A1 0.53(8a1
−12a21a2

−1)+0.32(9a1
−13b11b1

−1)+0.32(1a2
−12a28a1

−1) 0.0520 26.83

+0.31(8b2
−13a22b1

−1)

B2 0.41(1a2
−112a12b1

−1)−0.32(2b1
−112a11a2

−1)−0.32(2b1
−111a11a2

−1) 0.0382 26.97

+0.30(1a2
−111a12b1

−1)

A1 0.40(1a2
−13b16b2

−1)+0.38(6b2
−12a22b1

−1)+0.31(2b1
−13a28b2

−1) 0.0795 27.01

+0.30(8b2
−13a22b1

−1)

B2 0.42(1b1
−12a210a1

−1)+0.36(1a2
−13b19a1

−1)−0.31(1a2
−12a26b2

−1) 0.0143 27.15

A1 0.38(6b2
−13b11a2

−1)+0.31(6b2
−12a22b1

−1) 0.0351 27.16

A1 0.42(1a2
−19b22b1

−1) 0.0261 27.38

B2 0.49(6b2
−12a21a2

−1)−0.37(7a1
−13b11a2

−1) 0.0134 27.41

A1 0.33(1a2
−19b22b1

−1) 0.0279 27.44
a Ref. [15], b Ref. [17], c Ref. [9], d Ref. [7]

Other theoretical studies also explained these peaks in the same way.

The peaks 8-10 observed at 16.10, 16.58 and 16.97 eV were also characterized

as one-electron process. For these peaks, theoretical studies gave different picture:

the 2ph-TDA calculation [1] proposed that these line split into several peaks, while

other theoretical studies gave single peak for each state. In our SAC-CI results,

these peaks did not split, though the contribution of doubles was relatively large,

especially for B2u state.

In the energy region higher than 18 eV, two satellite peaks were observed at

about ∼ 18.0 and ∼ 19.1 eV [17]. For these peaks, the assignments were not

proposed in detail by both experimental and theoretical works. We calculated a

B2u state at 18.31 eV for the former peak, and three states, B3g, B2u, and B3u

states at 19.42, 19.82 and 20.98 eV, respectively, for the latter peak. These states

were dominantly represented by the two electron process such as (6a−1
g 2b3u1b

−1
1g )

and (1b−1
1g 2b3u5b

−1
1u ). Above this energy region, He II UPS measured the composite

peaks at about ∼ 20.6 and ∼ 21 eV [14]. B2g and A1g states were attributed for

these peaks by 2ph-TDA and 2h1p calculations [1]. We also calculated (4a−1
1 ) and

(2b−1
3g ) states with large intensity at 21.62 and 21.77 eV, respectively. These states
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TABLE IV: Calculated ionization potentials (IP, in eV), monopole intensities (M.I.),

and main configurations with the basis set for pyrimidine.

Sym. Main Configuration(|C| > 0.3) M.I. IP Expt.a Expt.b P3c CId

B2 0.95(7b2
−1) 0.7742 9.73 9.7 9.69 9.863 9.351

B1 0.97(2b1
−1) 0.7982 10.46 10.5 10.50 10.647 10.412

A1 0.94(11a1
−1) 0.7677 11.05 11.2 11.22 11.334 10.713

A2 0.96(1a2
−1) 0.7883 11.30 11.5 11.40 11.576 11.292

B1 0.93(1b1
−1) 0.7341 14.51 13.6 13.9 14.558 14.015

A1 0.94(10a1
−1) 0.7722 14.55 14.5 14.1 14.557 14.916

B2 0.95(6b2
−1) 0.7720 14.84 14.5 14.4 14.726 15.007

A1 0.94(9a1
−1) 0.7641 16.30 15.8 15.8 16.612 16.303

B2 0.94(5b2
−1) 0.7508 17.24 16.9 16.88 17.450 18.049

A1 0.92(8a1
−1) 0.7362 18.34 17.4 17.4 18.228 17.663

B2 0.83(11a1
−12a22b1

−1)+0.64(2b1
−12a211a1

−1)+0.37(7b2
−14b12b1

−1) 0.0133 20.15

+0.34(2b1
−14b17b2

−1)−0.31(7b2
−12a21a2

−1)

A1 0.86(11a1
−13b12b1

−1)−0.51(11a1
−12a21a2

−1)+0.49(2b1
−13b111a1

−1) 0.0111 20.24

A1 0.62(2b1
−12a27b2

−1)+0.31(1a2
−13b17b2

−1)−0.31(11a1
−12a21a2

−1) 0.0171 20.47

A1 0.59(7b2
−13b11a2

−1)+0.47(7a1
−1)−0.46(11a1

−12a21a2
−1) 0.1911 21.42

B2 0.38(2b1
−13b17b2

−1)+0.38(11a1
−12a22b1

−1)−0.37(2b1
−12a211a1

−1) 0.0528 21.46

A1 0.75(7a1
−1)−0.48(7b2

−13b11a2
−1) 0.4750 21.72 20.5 ∼ 20.5

B2 0.63(4b2
−1)+0.58(2b1

−13b17b2
−1)−0.32(1a2

−12a27b2
−1) 0.3421 21.81 20.5

B1 0.74(2b1
−12a21a2

−1)+0.42(2b1
−13b12b1

−1)+0.34(1a2
−13b11a2

−1) 0.0118 21.98

B2 0.47(4b2
−1)−0.44(11a1

−13b11a2
−1)−0.44(1a2

−13b111a1
−1) 0.1908 21.99

−0.38(7b2
−13b11b1

−1)−0.31(1b1
−13b17b2

−1)−0.30(2b1
−13b17b2

−1)

B2 0.57(11a1
−13b11a2

−1)+0.51(7b2
−13b11b1

−1)−0.37(2b1
−12a211a1

−1) 0.0785 22.23

+0.30(4b2
−1)+0.30(1a2

−12a27b2
−1)

B1 0.90(1a2
−12a22b1

−1)+0.34(2b1
−13b12b1

−1) 0.0329 22.61

A1 0.60(2b1
−13b111a1

−1)−0.45(1a2
−12a211a1

−1)−0.36(1b1
−12a27b2

−1) 0.0120 22.88

B2 0.64(6b2
−13b12b1

−1)−0.59(6b2
−12a21a2

−1)−0.44(10a1
−12a22b1

−1) 0.0170 23.42

+0.33(2b1
−13b16b2

−1)

B2 0.54(1a2
−12a27b2

−1)+0.43(2b1
−13b17b2

−1)+0.40(1b1
−12a211a1

−1) 0.0167 23.48

+0.37(2b1
−12a211a1

−1)

B2 0.68(10a1
−12a22b1

−1)−0.57(6b2
−12a21a2

−1)+0.39(2b1
−12a210a1

−1) 0.0111 23.63

−0.33(1a2
−12a26b2

−1)

A1 0.49(6b2
−12a22b1

−1)−0.44(2b1
−13b111a1

−1)+0.32(1a2
−13b17b2

−1) 0.0283 23.80

0.49(1a2
−13b17b2

−1)+0.47(1a2
−12a211a1

−1)+0.32(1b1
−13b111a1

−1) 0.0291 24.35

+0.30(2b1
−13b111a1

−1)

B2 0.50(1a2
−13b111a1

−1)+0.50(1b1
−13b17b2

−1) 0.0111 24.38

0.58(10a1
−13b11a2

−1)−0.44(1a2
−13b111a1

−1)+0.42(7b2
−13b11b1

−1) 0.0146 24.46

+0.38(1a2
−13b110a1

−1)−0.35(11a1
−13b11a2

−1)+0.31(6b2
−12a21a2

−1)

A1 0.50(2b1
−12a26b2

−1)−0.39(2b1
−13b110a1

−1) 0.0254 25.10

A1 0.54(9a1
−13b12b1

−1)−0.53(9a1
−12a21a2

−1)−0.38(10a1
−12a21a2

−1) 0.0231 25.24

−0.34(2b1
−12a26b2

−1)−0.31(10a1
−13b12b1

−1)

A1 0.54(11a1
−13b11b1

−1)+0.50(6b2
−13b11a2

−1)+0.40(11a1
−14b12b1

−1) 0.0256 25.41

+0.31(1a2
−13b16b2

−1)−0.30(7b2
−13b11a2

−1)

CONTINUE
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CONTINUED

B2 0.43(11a1
−12a21b1

−1)−0.40(11a1
−14b11a2

−1)−0.38(6b2
−12a21a2

−1) 0.0116 25.56

+0.35(10a1
−13b11a2

−1)−0.35(6b2
−13b12b1

−1)

A1 0.54(6a1
−1)+0.39(1a2

−12a210a1
−1) 0.2551 25.72 24.4

B2 0.50(1a2
−12a26b2

−1)−0.46(2b1
−13b16b2

−1) 0.0170 26.30

A1 0.48(9a1
−12a21a2

−1)+0.40(2b1
−13b110a1

−1)+0.36(6a1
−1) 0.1226 26.30

A1 0.46(9a1
−12a21a2

−1)−0.41(2b1
−13b110a1

−1)+0.40(9a1
−13b12b1

−1) 0.1069 26.40

−0.35(6a1
−1)

A1 0.34(1a2
−12a211a1

−1)−0.34(1b1
−12a27b2

−1)−0.33(1a2
−12a210a1

−1) 0.0454 26.55

A1 0.75(2b1
−113a12b1

−1) 0.0511 27.07

A1 0.43(2b1
−12a25b2

−1)+0.30(1a2
−14b17b2

−1) 0.0264 27.31

B2 0.35(2b1
−13b16b2

−1)+0.35(2b1
−18b22b1

−1) 0.0323 27.39

A1 0.40(5b2
−12a22b1

−1)−0.36(2b1
−18b21a2

−1)+0.35(8a1
−13b12b1

−1) 0.0132 27.51
a Ref. [16], b Ref. [17], c Ref. [9], d Ref. [5]

have large intensities, however, Koopmans’ picture was violated and the intensities

were distributed through the final-state correlation interaction. Many shake-up

states of two-electron processes continue from this energy region. Broad peak at

∼ 24 eV also reported by the He II UPS work [14]. We calculated prominent peaks

originating (2b−1
2u ) state at 24.95 and 25.75, and 26.06 eV, which were attributed to

the observed broad peak. Two electron processes, which interact with (3b−1
1u ) state

and are centered at 28.9 eV, were also obtained.

6.3.2 pyridazine

First four peaks observed at 9.27, 10.61, 11.2, and 11.3 eV [17] were firmly assigned

as (8b−1
2 ), (1a−1

2 ), (2b−1
1 ), and (10a−1

1 ) states calculated at 9.14, 10.57, 11.02, and

11.29 eV, respectively. The B1 and A1 states lie very close in energy and there were

different assignments for these two states; our calculation support the assignments

of the PIES by Kishimoto et al[17]. The order of next B1 and A1 states has also

not been definitive since they lie very close in energy. In our SAC-CI result, they

were calculated to be very close in energy as 14.44 and 14.48 eV; the order of these

states accords with experimental analysis, however, this is not conclusive from our

results since the energy separation is very small. Other theoretical studies of the

P3 and CI predicted the different order of these states.

139



TABLE V: Calculated ionization potentials (IP, in eV), monopole intensities (M.I.),

and main configurations with the basis set for s-triazine.

Sym. Main Configuration(|C| > 0.3) M.I. IP Expt.a Expt.b P3c CId

E′ 0.95(6e′−1) 0.7726 10.44 10.4 10.40 10.550 9.877

E′′ 0.97(1e′′−1) 0.7890 11.94 12.0 11.79 12.104 11.731

A′1 0.94(5a′1
−1) 0.7455 13.59 13.3 13.37 13.521 12.589

E′ 0.95(5e′−1) 0.7739 15.32 14.7 14.99 15.429 15.294

A′′2 0.93(1a′′2
−1) 0.7375 15.58 15.6 14.64 15.593 14.958

A′2 0.94(1a′2
−1) 0.7494 18.55 17.6 17.6 18.714 16.639

A′1 0.93(4a′1
−1) 0.7416 18.92 18.2 18.31 18.919

E′ 0.47(1e′′−12e′′6e′−1)−0.46(1e′′−12e′′6e′−1)−0.33(6e′−12e′′1e′′−1) 0.0401 22.20

−0.31(6e′−12e′′1e′′−1)

E′ 0.66(6e′−12e′′1e′′−1)+0.40(6e′−12e′′1e′′−1)−0.30(5a′1
−12e′′1a′′2

−1) 0.0621 22.53

E′ 0.79(4e′−1) 0.5242 22.83 22.0

E′ 0.71(1e′′−12e′′6e′−1)+0.52(1e′′−12e′′6e′−1) 0.0286 23.37

E′ 0.56(5e′−12e′′1e′′−1)−0.43(6e′−12e′′1a′′2
−1)+0.43(6e′−12e′′1a′′2

−1) 0.0198 24.06

+0.34(5e′−12e′′1e′′−1)+0.33(5a′1
−12e′′1e′′−1)−0.33(5a′1

−12e′′1e′′−1)

+0.30(1e′′−12e′′5e′−1)

A′′2 0.57(1e′′−12e′′1e′′−1)+0.57(1e′′−12e′′1e′′−1)−0.40(1e′′−12e′′1e′′−1) 0.0490 24.15

+0.39(1e′′−12e′′1e′′−1)+0.34(1a′′2
−12e′′1e′′−1)+0.33(1a′′2

−12e′′1e′′−1)

A′1 0.35(1a′′2
−12e′′6e′−1)−0.35(1e′′−12e′′6e′−1)+0.35(1a′′2

−12e′′6e′−1) 0.0199 24.46

+0.35(1e′′−12e′′6e′−1)+0.34(1e′′−12e′′6e′−1)+0.34(1e′′−12e′′6e′−1)

A′1 0.63(5e′−12e′′1e′′−1)+0.44(1e′′−12e′′5e′−1)+0.33(5a′1
−12e′′1e′′−1) 0.0273 24.94

−0.33(5a′1
−12e′′1e′′−1)

A′2 0.40(1e′′−12e′′6e′−1)+0.34(1e′′−12e′′6e′−1)−0.34(5e′−12e′′1e′′−1) 0.0239 24.94

A′2 0.50(5e′−12e′′1e′′−1)+0.41(5a′1
−12e′′1e′′−1)+0.41(1e′′−12e′′5e′−1) 0.0155 24.96

+0.40(1e′′−12e′′6e′−1)+0.39(5a′1
−12e′′1e′′−1)

A′1 0.58(1e′′−12e′′6e′−1)+0.43(1e′′−12e′′6e′−1)−0.35(1a′′2
−12e′′5a′1

−1) 0.0120 24.98

E′ 0.38(1e′′−12e′′5e′−1)+0.36(1a′′2
−12e′′6e′−1)+0.36(1a′′2

−12e′′6e′−1) 0.0137 25.98

+0.34(1e′′−12e′′5e′−1)

E′ 0.50(1e′′−12e′′5e′−1) 0.0144 26.07

A′′2 0.53(1a′′2
−12e′′1e′′−1)+0.53(1a′′2

−12e′′1e′′−1)+0.38(1e′′−12e′′1a′′2
−1) 0.0134 27.39

−0.36(1e′′−12a′′21e′′−1)+0.36(1e′′−12e′′1a′′2
−1)−0.34(1e′′−12a′′21e′′−1)

A′′2 0.45(1e′′−12a′′21e′′−1)−0.43(1e′′−12a′′21e′′−1)−0.42(1e′′−12e′′1a′′2
−1) 0.0100 27.41

+0.40(1e′′−12e′′1a′′2
−1)

E′ 0.59(1e′′−12e′′5e′−1)+0.41(1e′′−12e′′5e′−1) 0.0135 27.56

A′1 0.45(5a′1
−12e′′1a′′2

−1)−0.38(5e′−12e′′1e′′−1)−0.34(1a′′2
−12e′′5e′−1) 0.0481 28.01

A′1 0.39(1a′′2
−12e′′5e′−1)+0.31(5a′1

−12e′′1a′′2
−1) 0.0273 28.01

A′2 0.54(5a′1
−12e′′1a′′2

−1)−0.41(5e′−12e′′1e′′−1)+0.31(1a′′2
−12e′′5a′1

−1) 0.0767 28.04

A′1 0.48(4a′1
−12e′′1e′′−1)+0.47(4a′1

−12e′′1e′′−1)+0.40(5e′−12e′′1a′′2
−1) 0.0107 28.24

+0.39(5e′−12e′′1a′′2
−1)

A′1 0.0123 28.33

E′ 0.48(5e′−12e′′1e′′−1)+0.33(6e′−12a′′21e′′−1)−0.33(6e′−12a′′21e′′−1) 0.0251 28.51

−0.33(6e′−12a′′21a′′2
−1)

E′ 0.35(3e′−1) 0.1059 28.69
a Ref. [13], b Ref. [17], c Ref. [9], d Ref. [8]
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Next two peaks of (6b−1
2 ) and (8a−1

1 ) states also have the character of one elec-

tron processes, while the (7a−1
1 ) state considerably interacts with shake-up states;

twinning states were calculated at 17.99 and 18.24 eV: this is characteristic feature

for pyridazine different from other azines. Actually, satellite peak was observed in

the higher-energy region of peak 10 as the shoulder[17]. Above these states, many

two-electron processes of A1 symmetry were calculated, though the monopole inten-

sities of these states were very small. Åsbrink et al. observed two broad peaks near

∼20.7 eV by the He II UPS [15]. In this energy region, many split peaks originating

(6a−1
1 ) and (5b−1

2 ) were predicted; prominent peaks were calculated at 21.44, 21.62,

21.93, and 22.09 eV. These peaks correspond to (2b−1
3g ) and (4a−1

g ) states of pyri-

dazine and the breakdown of the Koopmans’ picture is also similar. The shake-up

states originating from (5a−1
1 ) state were calculated in higher energy region than

other azines and they were located around 26 ∼ 27 eV, which is also characteristic

to pyridazine.

6.3.3 pyrimidine

The assignment of the first four peaks was confirmed by the SAC-CI method: the

B2, B1, A1, and A2 states observed at 9.69, 10.50, 11.22, and 11.40 eV [17] were

calculated at 9.73, 10.46, 11.05, and 11.30 eV, respectively. Other theoretical works

also gave same assignment for these peaks. Next three peaks are very close in

energy, which is characteristic to pyrimidine. Two peaks measured at 13.9 and 14.1

eV were attributed to the B1 and A1 states, respectively, by the PIES work [17]. Our

calculation reproduced the order of these states, though the energy separation was

very small as 0.04 eV. The P3 calculation also gave almost the same IPs for these

states [9]. Next three peaks at 15.8, 16.88, and 17.4 eV, which were assigned as the

(9a−1
1 ), (5b−1

2 ), and (8a−1
1 ) states, respectively, were also confirmed by the present

calculation, though the IPs were calculated to be larger than the experimental

values, especially for the (8a−1
1 ) state.

No prominent shake-up states were calculated until ∼ 21.5 eV. The He II UPS

measured the peak at around ∼ 20.5 eV [16]. For this peak, many correlation peaks
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were obtained in the present calculation and the representative peaks were calcu-

lated at 21.42, 21.72, 21.81, and 21.99 eV, which are of either A1 or B1 symmetry.

Broad peak was also observed at ∼ 24.4 eV by the He II UPS [16]. Accordingly,

many A1 states split through the final-state correlation interaction with (6a−1
1 ) state

were calculated for this peak. There are still discrepancies between the theoreti-

cal and experimental IPs. By including higher-order terms of R-operators, these

values are to be improved, however, the feature of the spectrum and the present

assignments are valid.

6.3.4 s-triazine

First three peaks were calculated at 10.44(E ′), 11.94(E ′′), and 13.59(A′
1) eV in

agreement with the experimental assignment and IPs of 10.40, 11.79, and 13.37 eV

[17]. The assignments of the next two peaks have been controversial. The SAC-CI

method gave these peaks at 15.32 and 15.58 eV for E ′ and A′′
2 states, respectively.

Our assignment for these states accords with that of the P3 method [9], however,

contradicts to that of the PIES experiment [17]. For the peaks 6 and 7, we calculated

the (1a′−1
2 ) and (4a′−1

1 ), both of which are described by the one-electron process. In

the energy region of 18 ∼ 20 eV, no satellite peaks were obtained, which was also

indicated by the experimental work[13].

The He II PES observed the peak around ∼ 22.0 eV [13]. We assigned this peak

as some E ′ states, one of which has large monopole intensity at 22.83 eV. Above

this energy region, many shake-up states with small intensities were calculated up

to ∼ 30 eV.

6.3.5 Correlation peaks of azabenzenes at 24∼30eV

For pyrazine, pyridazine, pyrimidine, and s-triazine we have calculated (observed[17])

many correlation peaks centered at 24.95eV (∼ 24eV), 26.40eV (not observed),

25.72eV (24.4eV) and 28.69eV (not observed), respectively.

These peaks are characterized as one electron process the nature of 2b−1
u , 5a−1

1 ,

6a−1
1 and 3e′−1 states, respectively, are important, which have largest coefficient.
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The values of IP by Koopmans’ are 28.76eV for pyrazine, 30.33eV for pyridazine,

29.36eV for pyrimidine, 33.19eV for s-triazine, respectively. Compare these values

to calculated IPs, we find that the states which ionized from 9th orbital are sta-

bilized about ∼4eV by taking into account the electron correlation, we would say

that stabilization is due to the dynamic correlation. The difference of IP may be

explained by the location of the nitrogen atoms and nature of the Hartree-Fock

orbital; σ(C− N) and σ(C− C). For pyrazine, the nature of MO is σ(C− C), and

delocalization of σ bond is separated by nitrogen(see figure VI); this orbital is most

unstable among four compounds, so that this peak is observed as lowest IP. For

pyridazine, this MO’s nature is σ(C − C) and this orbital is delocalized, not split-

ted by nitrogen atoms. For pyrimidine, σ bond is more delocalized than pyrazine

but not than pyridazine. For s-triazine, the nature of this orbital is σ(C− N) and

degenerated, so that this most stabilized. We predict that there are correlation

peaks which may be observed at ∼25eV, for pyridazine and ∼27eV for s-triazine.

If this trend is true, this estimation can be compared to benzene, and pyridine.

For pyridine, experimental IP is 24.3eV and Koopmans’ value are 28.15eV, respec-

tively, and for benzene(see Figure X), experimental IP is ∼23eV[56] and Koopmans’

value is 27.59eV, so our estimation may not be so bad(calculation is performed with

6-31G*/B3LYP DFT optimized geometry).

6.4 The breakdown of Koopmans’ theorem

Breakdown of Koopmans’ theorem is the term introduced by Cederbaum et al.[48],

a situation which Koopmans defect differs so much for some ionizations that se-

quence of the electronic states of the ion is altered in comparison to the equence of

the occupied orbitals. Such situations are observed at ionization from outer valence

electrons, especially, ionization from n orbital and π orbitals[1, 49, 50, 51, 52, 53, 54].

This effect is explained as many body effect by perturbative treatment for N2 and

F2[48], and its simple explanation for them[49] was effect of mixing configurations

of valence electron(“static correlation”). Other explanation was based on “reorga-

nization of orbital”[54]. In this section, we analyze this effect in detail.
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Figure XI: Comparison of IP by Koopmans and SAC-CI calculation for pyrazine
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6.4.1 Calculation and experimental fact

We compared the SAC-CI result with the experimental and Koopmans’ IPs of

pyrazine, pyridazine, pyrimidine, s-triazine and trans-acrolein in table VI. We also

dipicted the diagram of pyrazine in figure XI. The relative positions of the ioniza-

tions from n- and π- orbitals are not reproduced by the Koompans’ theorem. Such

breakdown can be generally observed for many other molecules. When we compare

the Koomans’ IPs and the SAC-CI IPs, we find a rule:

• Electron correlation and the orbital reorganization energes of the ionized states

of (π−1) is almost same as those in the ground state.
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TABLE VI: Comparison of ionization order of SAC-CI, experiment and Koopmans.

pyrazine SAC-CI(SD-R) Exp. Koopmans

Sym. Nature Main Config. IP IP Sym. Nature IP

Ag n(N) 0.95(6ag
−1) 9.49 9.61 1b1g π(C− C) 9.83

B1g π(C− C) 0.97(1b1g
−1) 10.06 10.20 6ag n(N) 11.22

B1u n(N) 0.94(5b1u
−1) 11.30 11.38 1b2g π(N−N) 11.89

B2g π(N−N) 0.96(1b2g
−1) 11.64 11.80 5b1u n(N) 13.66

pyridazine SAC-CI(SD-R) Exp. Koopmans

Sym. Nature Main Config. IP IP Sym. Nature IP

B2 n(N) 0.95(8b2
−1) 9.49 9.27 1a2 π(C−N) 10.46

A2 π(C− C) 0.97(1a2
−1) 10.57 10.61 2b1 π(C− C) 11.00

B1 π(C− C) 0.97(2b1
−1) 11.02 11.2 8b2 n(N) 11.07

A1 n(N) 0.93(10a1
−1) 11.29 11.3 10a1 n(N) 13.09

pyridazine SAC-CI(SD-R) Exp. Koopmans

Sym. Nature Main Config. IP IP Sym. Nature IP

B2 n(N) 0.95(7b2
−1) 9.73 9.69 2b1 π(C− C) 10.37

B1 π(C− C) 0.97(2b1
−1) 10.46 10.50 7b2 n(N) 11.00

A1 n(N) 0.94(11a1
−1) 11.05 11.22 1a2 π(C−N) 11.07

A2 π(C−N) 0.96(1a2
−1) 11.30 11.40 11a1 n(N) 13.09

s-triazine SAC-CI(SD-R) Exp. Koopmans

Sym. Nature Main Config. IP IP Sym. Nature IP

E′ n(N) 0.95(6e′−1) 10.44 10.40 1e′′ π(C−N) 12.02

E′′ π(C−N) 0.97(1e′′−1) 11.94 11.79 6e′ n(N) 12.07

A′1 n(N) 0.94(5a′1
−1) 13.59 13.37 5a′1 n(N) 15.71

E′ σ(C−H) 0.95(5e′−1) 15.32 14.64 1a′′2 π(C−N) 16.66

trans-acrolein SAC-CI(General-R) Exp. Koopmans

Sym. Nature Main Config. IP IP Sym. Nature IP

A′ n(O) 0.92(13a′−1) 9.62 10.10 2a′′ π 10.85

A′′ π 0.95(2a′′−1) 10.50 10.92 13a′ n(O) 11.74
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• Ionized species which ionized from n orbital are stabilized than neutral but

more than σ so IP gets lower and sometimes breaks Koopmans’ theorem.

• Ionized species which ionized from σ orbital are stabilized than neutral but

less than n.

Ionized states of (n−1) are much stabilized than those of (π−1) and consequently,

makes the ordering of Koopmans is inverted. Stablization of the (n−1) state is

remarkable and essential. We approximately analyze this effect into three categories:

orbital reorganization, static correlation or dynamic correlation. Here we define

three effect as follows. Orbital relaxation is described within the SCF level, so

we can evaluate this effect by ROHF for ionized state. Static correlations are

calculated using the CI calculations within valence orbitals. Rest part of the electron

correlations are due to the dynamic correlation, explained by dynamic motion of

two electrons.

6.4.2 trans-acrolein

First, we studied simple system, trans-acrolein. We used 6-31G*/DFT(B3LYP)

optimized geometry and double-ζ+polarized function(total basis function is 40 and

number of electron is 30). We also analyzed ionization spectrum of this system in

detail in the next chapter of this thesis.

1. Orbital relaxation effect

We performed ∆SCF calculations for this system to see whether the reor-

ganization of orbitals are essential or not. Figure XII shows orbital plot of

HOMO(2a′′; n(O)) and next HOMO(13a′; π) of ground state, HOMO(2a′′; n(O))

of 2A′ state by ROHF, HOMO(13a′; π) of 2A′′ state by ROHF with orbital

energy. Apparently, reorganization of orbital is important in this case, and

the ordering between n−1 and π−1 states is reproduced within ∆SCF, but the

comparison of the calculated IPs with experiment is still poor, in agreement

with the result of G. Granozzi et al[54].
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2. Static correlation effect

ionzae performed CAS calculation which includes n, π and π∗ orbitals to see

the static correlations. Table IX shows absolute value of CI coefficients larger

than 0.05, its electronic configuration, and excitation or ionization nature of

neutral and ionized states. Notably, ground and π state didn’t have large CI

coefficents for CI configuration including excitation from n orbital and this

calculation gave the same ordering as the Koopmans’.

These results are compiled at table VII. In the case of acrolein, the breakdown of

Koopmans’ theorem is due to the dynamical correlation and partially reorganization

of Hartree-Fock orbital.

Figure XII: MO plotting with symmetry, IP and nature for HOMO and next HOMO

of trans-acrolein and HOMO of its cations
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TABLE VII: The breakdown of Koopmans theorem for trans-acrolein.

Nature IP(Koopmans) IP(∆SCF) IP(CI) IP(SAC-CI/Gen-R)a Exp.
2A′ n(O) 11.74 8.789 11.07 9.62 10.10
2A′′ π 10.85 9.684 10.81 10.50 10.92

a Ref[57].

TABLE VIII: Small active space CI for trans-acrolein and its cations with coeffi-

cient, configuration and nature

ground state

coeff. |C| > 0.05 configuration nature

0.974322 – –

−0.143017 (2a′′)−1(2a′′)−1(3a′′)(3a′′) π → π∗, π → π∗

0.086639 (1a′′)−1(2a′′)−1(3a′′)(4a′′) π → π∗, π → π∗

−0.073749 (1a′′)−1(1a′′)−1(3a′′)(4a′′) π → π∗, π → π∗

−0.072494 (1a′′)−1(1a′′)−1(3a′′)(3a′′) π → π∗, π → π∗

−0.055327 (1a′′)−1(1a′′)−1(4a′′)(4a′′) π → π∗, π → π∗

0.058055 (2a′′)−1(2a′′)−1(3a′′)(4a′′) π → π∗, π → π∗

A′ (n)

0.945617 (13a′)−1 n →∞
−0.250830 (13a′)−1(2a′′)−1(3a′′) n →∞, π → π∗

0.099352 (13a′)−1(2a′′)−1(3a′′) n →∞, π → π∗

0.094282 (13a′)−1(2a′′)−1(2a′′)−1(3a′′)(3a′′) n →∞, π → π∗, π → π∗

−0.075300 (13a′)−1(2a′′)−1(4a′′) n →∞, π → π∗

0.061365 (13a′)−1(1a′′)−1(4a′′) n →∞, π → π∗

A′′ (π)

0.968055 (2a′′)−1 π →∞
−0.102828 (2a′′)−1(1a′′)−1(1a′′)−1(3a′′)(3a′′) π →∞, π → π∗, π → π∗

0.100991 (2a′′)−1(1a′′)−1(3a′′) π →∞, π → π∗

−0.095784 (2a′′)−1(1a′′)−1(3a′′) π →∞, π → π∗

−0.084691 (2a′′)−1(1a′′)−1(1a′′)−1(3a′′)(4a′′) π →∞, π → π∗, π → π∗

0.080244 (2a′′)−1(1a′′)−1(4a′′) π →∞, π → π∗

−0.079420 (2a′′)−1(1a′′)−1(1a′′)−1(2a′′)(3a′′) π →∞, π → π, π → π∗

−0.051979 (2a′′)−1(1a′′)−1(2a′′) π →∞, π → π

−0.055090 (2a′′)−1(1a′′)−1(1a′′)−1(4a′′)(4a′′) π →∞, π → π∗, π → π∗
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TABLE IX: The breakdown of Koopmans theorem for pyrazine.

Nature IP(Koopmans) IP(∆SCF) IP(CI) IP(SAC-CI/SD-R) Exp.a

Ag n(N) 11.22 10.250 10.22 9.49 9.61

B1g π(C− C) 9.83 9.050 9.93 10.06 10.20

B1u n(N) 13.66 12.195 11.96 11.30 11.38

B2g π(N−N) 11.89 10.884 11.56 11.64 11.80

a Ref[17].

6.4.3 pyrazine

Next, we studied pyrazine. Results for these effects are compiled in table VIII.

1. Orbital relaxation effect

Lower four ionized states have different spatial symmetry, so the ROHF is

well-defined. Practically, we performed MCSCF calculation with higher four

orbitals. In figure XIII, we show MOs of ground state: 6ag, 1b1g, 5b1u, 1b2g and

6ag(HOMO) orbital of ROHF(Ag state), 1b1g(HOMO) of ROHF(B1g state),

5b1u(HOMO) of ROHF(B1u state) and 1b2g of ROHF(B2g state) calculation

with orbital energy. Symmetric restriction of this system may prohibit to

delocalize even for ROHF calculation, anyway, reorganization of MO was not

drastic effect.

2. Static correlation effect

In this system, we include n, π and π∗ orbitals as active space and performed

CI calculations up to 8 electron excitations(see table X). As shown before,

ground and π state didn’t have large CI coefficents for CI configuration in-

cluding excitation from n orbital. Major improvement is observed for B1u

state, however 0.5 ∼ 0.6eV should be lower to be inverted, lacking taking into

accout the dynamic correlation.
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Figure XIII: MO plotting with symmetry, IP and nature for higher four orbitals
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TABLE X: Small active space CI for pyrazine and its cations with coefficient, con-

figuration and nature

ground state

coeff. |C| > 0.05 configuration nature

0.956450 – –

−0.133518 (5b1u)−1(5b1u)−1(7ag)(7ag) π → π∗, π → π∗

−0.127366 (1b2g)−1(1b1g)−1(2b3u)(1au) π → π∗, π → π∗

−0.124076 (1b1g)−1(1b1g)−1(1au)(1au) π → π∗, π → π∗

0.095335 (1b3u)−1(1b2g)−1(2b3u)(2b2g) π → π∗, π → π∗

0.076691 (1b2g)−1(1b1g)−1(2b3u)(1au) π → π∗, π → π∗

−0.069815 (1b3u)−1(1b1g)−1(1au)(2b2g) π → π∗, π → π∗

−0.054024 (1b1g)−1(1b1g)−1(2b3u)(2b3u) π → π∗, π → π∗

Ag (n)

0.931961 (6ag)−1 n →∞
−0.207546 (6ag)−1(5b1u)−1(1b2g)−1(6ag)(2b3u) n →∞, n → π∗, π → n

0.103577 (6ag)−1(1b1g)−1(1b1g)−1(1au)(1au) n →∞, π → π∗, π → π∗

−0.088880 (6ag)−1(1b2g)−1(2b2g) n →∞, π → π∗

−0.084642 (6ag)−1(1b2g)−1(1b2g)−1(2b3u)(2b3u) n →∞, π → π∗, π → π∗

0.081555 (6ag)−1(5b1u)−1(1b1g)−1(6ag)(1au) n →∞, n → π∗, n → π

−0.078792 (6ag)−1(1b2g)−1(1b1g)−1(2b3u)(1au) n →∞, π → π∗, π → π∗

0.075114 (6ag)−1(1b1g)−1(1b1g)−1(2b3u)(2b3u) n →∞, π → π∗, π → π∗

−0.067416 (6ag)−1(1b3u)−1(1b2g)−1(2b3u)(2b2g) n →∞, π → π∗, π → π∗

−0.061705 (6ag)−1(1b2g)−1(1b1g)−1(2b3u)(1au) n →∞, π → π∗, π → π∗

−0.056898 (6ag)−1(1b3u)−1(1b1g)−1(1au)(2b2g) n →∞, π → π∗, π → π∗

−0.054627 (6ag)−1(5b1u)−1(1b1g)−1(6ag)(1au) n →∞, n → π, n → π∗

−0.050879 (6ag)−1(1b3u)−1(2b3u) n →∞, π → π∗

B1g (π)

0.960874 (1b1g)−1 π →∞
0.136481 (1b1g)−1(1b3u)−1(2b3u) π →∞, π → π∗

−0.122533 (1b1g)−1(1b2g)−1(1b2g)−1(2b3u)(2b3u) π →∞, π → π∗, π → π∗

−0.089768 (1b1g)−1(1b3u)−1(1b2g)−1(2b3u)(2b2g) π →∞, π → π∗, π → π∗

−0.081438 (1b1g)−1(1b2g)−1(1b1g)−1(2b3u)(1au) π →∞, π → π∗, π → π∗

0.067593 (1b1g)−1(1b2g)−1(2b2g) π →∞, π → π∗

0.065952 (1b1g)−1(1b3u)−1(1b2g)−1(1b1g)(1au) π →∞, π → π∗, π → π

−0.056833 (1b1g)−1(1b3u)−1(1b3u)−1(2b3u)(2b3u) π →∞, π → π∗, π → π∗

CONTINUE
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CONTINUED

B1u (n)

coeff. |C| > 0.05 configuration nature

0.895097 (5b1u)−1 n →∞
−0.290826 (5b1u)−1(1b2g)−1(6ag)−1(5b1u)(2b3u) n →∞, n → π, n → π∗

−0.126430 (5b1u)−1(1b2g)−1(2b2g) n →∞, π → π∗

0.107622 (5b1u)−1(6ag)−1(1b1g)−1(5b1u)(1au) n →∞, n → π, n → π∗

0.096936 (5b1u)−1(1b1g)−1(1b1g)−1(1au)(1au) n →∞, π → π∗, π → π∗

0.090525 (5b1u)−1(1b1g)−1(1b1g)−1(2b3u)(2b3u) n →∞, π → π∗, π → π∗

−0.088899 (5b1u)−1(1b3u)−1(2b3u) n →∞, π → π∗

−0.076040 (5b1u)−1(1b2g)−1(6ag)−1(5b1u)(2b3u) n →∞, n → π, n → π∗

−0.075921 (5b1u)−1(6ag)−1(1b1g)−1(5b1u)(1au) n →∞, n → π, n → π∗

0.067139 (5b1u)−1(1b3u)−1(5b1u)(1b2g)−1(6ag)−1(2b3u)(2b3u) n →∞, π → π∗, n → π∗, π → n

−0.064184 (5b1u)−1(1b2g)−1(1b1g)−1(2b3u)(1au) n →∞, π → π∗, π → π∗

−0.059895 (5b1u)−1(1b2g)−1(1b1g)−1(2b3u)(1au) n →∞, π → π∗, π → π∗

−0.059485 (5b1u)−1(1b2g)−1(1b2g)−1(2b3u)(2b3u) n →∞, π → π∗, π → π∗

0.055060 (5b1u)−1(1b3u)−1(1b1g)−1(1au)(2b2g) n →∞, π → π∗, π → π∗

B2g (π)

0.943009 (1b2g)−1 π →∞
−0.115680 (1b2g)−1(1b3u)−1(2b3u) π →∞, π → π∗

0.133021 (1b2g)−1(1b3u)−1(1b1g)−1(1b2g)(1au) π →∞, π → π, π → π∗

−0.131040 (1b2g)−1(1b3u)−1(2b3u) π →∞, π → π∗

−0.100320 (1b2g)−1(1b2g)−1(2b2g) π →∞, π → π∗

0.099386 (1b2g)−1(1b1g)−1(1b1g)−1(1au)(1au) π →∞, π → π∗, π → π∗

0.086177 (1b2g)−1(1b1g)−1(1b1g)−1(2b3u)(2b3u) π →∞, π → π∗, π → π∗

0.075080 (1b2g)−1(1b1g)−1(1b1g)−1(1b2g)(2b2g) π →∞, π → π, π → π∗

0.068746 (1b2g)−1(1b3u)−1(1b3u)−1(2b3u)(2b3u) π →∞, π → π∗, π → π∗

−0.057473 (1b2g)−1(1b2g)−1(1b1g)−1(2b3u)(1au) π →∞, π → π∗, π → π∗

0.055556 (1b2g)−1(1b3u)−1(1b1g)−1(1au)(2b2g) π →∞, π → π∗, π → π∗

0.053723 (1b2g)−1(1b3u)−1(1b2g)−1(2b3u)(2b2g) π →∞, π → π∗, π → π∗
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6.5 Conclusion

The SAC-CI SD-R method has been applied to the detailed assignment of the

outer-valence ionization spectra of pyrazine, pyridazine, pyrimidine, and s-triazine.

The peak positions of the photoelectron spectra of these molecules have successfully

reproduced and the detailed characterization for both main peaks and satellite peaks

has been proposed.

We examined the ordering of the main peaks, some of which were contradictory

proposed in the previous works. We also analyzed the low-lying satellite peaks in

the energy region of 18 ∼ 20 eV in detail. These satellite peaks of these molecules

have not been well assigned so far. In this region, some satellites with considerable

intensity were calculated for pyrazine and pyridazine, while no remarkable satellite

peaks were obtained for pyrimidine and s-triazine. This accords with the recent

experimental work by the PIES and He I UPS. In the higher-energy region above

20 eV, the remarkable breakdown of the Koopmans’ picture was seen for all the

azines and numerous shake-up states were obtained as the continuous band.

Positions of the correlation peaks at 24∼30eV were accounted by the nature

of the canonical orbital energy. Position of the nitrogen atom, which separates σ

orbital and affects the orbital energy, was found to be important, and we predicted

some peaks which have not been observed for pyridazine and s-triazine.

Finally, we proved that breakdown of Koopmans’ theorem were due to dynamic

correlation. However, it is still unclear why this is effective only for n orbitals. A

simple explanation by Cederbaum[49] was that static correlation is important for

N2 and F2, but does not seems to be true for generic systems, because the number

of electrons is so small that they may also include quite large amount of dynamic

correlation. In section 6.4, all calculation other than SAC-CI are calculated by

gamess[58].
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[13] C. Fridh, L. Åsbrink, B. Ö. Jonsson, and E. Lindholm, Int. J. Mass Spec. and

Ion Phys., 8, (85) 1972.
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Chapter 7.

Outer-valence ionization spectra of

methylenecyclopropane and trans-acrolein

studied by the SAC-CI general-R method

Abstract

The outer-valence ionization spectra of methylenecyclopropane and trans-acrolein

have been studied by the SAC-CI (symmetry-adapted-cluster configuration-interaction)

general-R method. Experimental photoelectron spectra of these molecules were ac-

curately reproduced and the detailed interpretation of the satellite peaks was per-

formed. For methylenecyclopropane, three satellite peaks were calculated at around

17 eV and the remarkable breakdown of the Koopman’s picture was seen for (5a1)
−1

state, which were not addressed in the experimental work. For trans-acrolein, a CI

state at 15.5 eV was confirmed and many satellite peaks were obtained from 17 eV

interacting with (8a′)−1 and (7a′)−1 states.
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7.1 Introduction

Recently, valence ionization spectrum of molecules has been extensively studied

in both the experimental and theoretical works and the detailed assignment has

become possible not only for the main peaks but satellite peaks. The accurate

characterization of the spectrum has been achieved by the cooperative interplay of

these works; since the correlation peaks are described by the more-than-two electron

processes [1, 2, 3], theoretical information is indispensable for the detailed assign-

ments of these peaks. There are also interesting spectroscopies like Penning ion-

ization spectroscopy (PIES) and electron momentum spectroscopy (EMS) besides

the high-resolution photoelectron spectroscopy (PES) using synchrotron radiation

(SR-PES) or X-ray PES.

Ionization spectrum of the molecule with π conjugation are of special interest,

since they have many satellite peaks in the low-energy region. They are usually

attributed to the two-electron process accompanied with the excitation to π∗ MOs.

Outer-valence ionization spectra of the trans-acrolein was measured by He I [4] and

He II [5] PES. The He II PES was interpreted by the Green’s function calculation

[6] and later, the 2h-1p CI calculation [7]. The PIES was also applied to the outer-

valence region [8]. For the methylenecyclopropane, only the He I PES [4, 9, 10]

have been applied by some group and there is no information for the higher-energy

outer-valence region. CI calculation was performed for the assignments, however,

the results were limited up to 17 eV. Both of these molecules have some interesting

correlation peaks in the outer-valence region and therefore, accurate theoretical

information is very useful.

In the series of the studies, we have investigated the valence ionization spectra

of various molecules using the SAC-CI (symmetry-adapted-cluster configuration-

interaction) method. The SAC/SAC-CI method [11, 12, 13, 14, 15] has been suc-

cessfully applied to a number of molecular spectroscopies [16, 17, 18, 19, 20] in-

cluding the ionization spectrum. Especially, SAC-CI general-R method [21, 22] has

been proved to be a powerful tool for describing the multiple electron processes in

high accuracy and studying the large numbers of states appearing in the ionization
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spectrum[23, 24, 25, 26, 27, 28, 29].

Figure I: Structure and coordinate for methylenecyclopropane and trans-acrolein

methylenecyclopropane
O

trans-acrolein

7.2 Computational details

The vertical ionization process was studied in this work and the optimized geome-

tries were used for both methylenecyclopropane in C2v and trans-acrolein in Cs.

Optimizations were performed by B3LYP[30]/6-311G∗[31]. The basis sets were due

to the DZ1P quality; [4s2p1d/2s1p][32, 33] for both molecules. The resultant SCF

dimensions were 90 and 60 for methylene cyclopropane and trans-acrolein, respec-

tively.

The valence ionization spectra of these molecules were calculated by the SAC-CI

general-R method in the outer-valence region to interpret the He I or He II PES. The

1s orbitals of C and O were kept as frozen core and all the other MOs were included

in the active space; the active space of the SAC-CI consisted 11 occupied and 75

unoccupied MOs for methylenecyclopropane and 11 occupied and 65 unoccupied

MOs for trans-acrolein. Valence MOs are plotted with orbital energy, and character

by MOLDEN[34] are also shown in figure V and VI.

To reduce the computational effort, perturbation selection [15] was performed

in the state-selection scheme [35]. In the SAC ground-state calculation, all single-

excitation and selected S+
I were included in the linked term. The energy threshold λg

for perturbation selection(PS) was 1.0×10−5 a.u. For the unlinked term, we included

only the products of the double-excitation operators S+
I S+

J when the coefficients CI

and CJ , estimated by SD-CI in practice, were lager than 1.0× 10−3. In the SAC-CI
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general-R calculations for the ionized states, a preliminary SDCI calculation was

performed to select the higher-order operators required for a quantitative description

of the multi-electron process. Since the shake-up states in the outer-valence region

of these molecules are dominantly described by two-electron processes, the higher-

order operators were limited up to triples and the energy thresholds of R-operators

were of λe = 1 × 10−7 and 1 × 10−6 for doubles and triples, respectively. The

thresholds of the CI coefficients for calculating the unlinked operators in the SAC-

CI method are 0.05 and 1× 10−8 for the R and S operators, respectively.

Ionization cross-sections were calculated using the monopole approximation [36,

37] to estimate the relative intensities of the peaks. Both initial- and final-state

correlation effects are included.

The SAC/SAC-CI calculations were executed using the SAC96 program system

[38], which has been incorporated into the development version of the Gaussian

suite of programs [39].

7.3 Results and discussions

The Hartree-Fock orbital sequences of the methylenecyclopropane and trans-acrolein

were summarized in Table I. The SCF energy of these molecules are calculated to

be −154.9168 and −190.8027 au with the present conditions.

TABLE I: Ground-state valence electronic configurations

System Hartree-Fock valence configuration

methylenecyclopropane (1a1)(2a1)(1b2)(3a1)(4a1)(5a1)(2b2)(6a1)(1b1)(7a1)(3b2)(1a2)(8a1)(4b2)(2b1)

trans-acrolein (1a′)(2a′)(3a′)(4a′)(5a′)(6a′)(7a′)(8a′)(9a′)(10a′)(11a′)(12a′)(1a′′)(13a′)(2a′′)

7.3.1 methylenecyclopropane

The He I PES of this molecule was measured by Kimura et al. and the theoretical

assignment was done with the CI calculation up to 17.0 eV [4]. In the present
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Figure II: Outer-valence ionization spectra of methylenecycloprpane by (a) He I

PES and (b) SAC-CI general-R
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Fig. 2. Outer-valence ionization spectra of ethylene  cyclopropane 
by (a) He I PES and (b) SAC-CI general-R
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TABLE II: SAC-CI general-R dimensions

system Single Double Triple Quadruple Quintuple Sextuples

methylenecyclopropane(A1) 5 2392 10824 6139 2753 33

methylenecyclopropane(A2) 1 2034 11051 6886 2560 32

methylenecyclopropane(B1) 2 2102 10246 6737 2675 39

methylenecyclopropane(B2) 3 2340 11013 6082 2923 34

trans-acrolein(A′) 9 4435 4389 1736 701 0

trans-acrolein(A′′) 2 3120 5391 1980 805 9

work, the outer-valence ionization spectrum was studied up to around 22 eV. For

obtaining the spectrum in this energy region, fifteen solutions were calculated for

each symmetry of C2v point group. The resultant SAC-CI general-R dimensions

were summarized in Table II. In Fig. 1, the He I PES [4] and the SAC-CI spectra

are compared. The theoretical spectrum was convoluted with Gaussian envelope

for describing the Frank-Condon width and the resolution of spectrometer; the

fwhm of Gaussian was taken to 0.05 × ∆E (in eV). In Table III, the results of

IPs, monopole intensities, and detailed ionization characters for the valence ionized

states, which have large intensity greater than 0.005 were presented with the IPs of

He I PES and CI calculation. First three peaks observed at 9.76, 10.72 and 11.44

eV [4] were assigned to the ionizations from the outer three MOs, 2b1, 4b2 and 8a1,

respectively. The present calculation computed the IPs of these states relatively

lower in energy as 9.34, 10.30 and 10.79 eV. The next continuous four peaks at

13.1, 14.5, 15.8, and 16.3 eV in the He I PES [4] were attributed to the 2A2,
2B2,

2A1 and 2B1 states and they were calculated at 13.06, 14.61, 15.60 and 16.00 eV,

respectively. These seven ionizations are dominantly described by the one-electron

process and the monopole intensities are large. The Koopmans’s ordering is valid

for these states. Note that B2 state at 14.61 eV is slightly contributed by two-

electron process. In the higher-energy region of (1b1)
−1, three shake-up states were

predicted at 16.82, 16.92 and 17.34 eV. These peaks were not addressed in the He I

PES work, however, the observed band around 16 eV has the asymmetric shape and
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TABLE III: Calculated ionization potentials (IP, in eV), monopole intensities

(M.I.), and main configurations with the basis set for methylenecyclopropane by

SAC-CI general-R

Sym. Main Configuration(|C| > 0.2) M.I. IP Expt. CI

B1 0.94(2b1
−1) 0.8873 9.34 9.76 9.35

B2 0.93(4b2
−1) 0.8747 10.30 10.72 10.39

A1 0.93(8a1
−1) 0.8734 10.79 11.44 10.87

A2 0.94(1a2
−1) 0.8842 13.06 13.1 13.22

B2 0.91(3b2
−1)−0.25(2b1

−13b14b2
−1) 0.8393 14.61 14.5 14.79

A1 0.93(7a1
−1) 0.8691 15.60 15.8 16.06

B1 0.93(1b1
−1) 0.8702 16.00 16.3 16.37

B2 1.06(4b2
−13b12b1

−1)+0.49(2b1
−13b14b2

−1)+0.29(4b2
−17b12b1

−1) 0.0130 16.82

A1 1.06(8a1
−13b12b1

−1)+0.52(2b1
−13b18a1

−1)+0.25(8a1
−17b12b1

−1) 0.0176 16.92

B1 1.28(2b1
−13b12b1

−1)+0.32(2b1
−17b12b1

−1) 0.0191 17.34

A1 0.91(6a1
−1) 0.8269 17.70 ∼17.7

B2 0.87(2b2
−1)−0.26(2b1

−13b14b2
−1) 0.7589 20.07 ∼20.7

B2 0.86(2b1
−13b14b2

−1)+0.27(2b2
−1) 0.0943 20.76

A1 0.92(2b1
−13b18a1

−1) 0.0180 21.01

A1 0.87(7a1
−13b12b1

−1)+0.50(2b1
−13b17a1

−1)+0.40(5a1
−1) 0.1632 22.26

+0.28(4b2
−13b11a2

−1)+0.25(1a2
−13b14b2

−1)+0.23(7a1
−17b12b1

−1)

A1 0.62(5a1
−1)−0.38(7a1

−13b12b1
−1)−0.36(6a1

−13b12b1
−1) 0.3845 22.64

−0.31(2b1
−13b16a1

−1)+0.31(2b1
−112a12b1

−1)−0.27(2b1
−110a12b1

−1)

−0.25(2b1
−19a12b1

−1)−0.21(4b2
−15b28a1

−1)+0.20(2b1
−111a12b1

−1)

A2 0.85(2b1
−13b11a2

−1)−0.22(8a1
−15b22b1

−1)+0.20(2b1
−14b11a2

−1) 0.0093 22.71

A1 0.82(1a2
−13b14b2

−1)−0.42(4b2
−15b28a1

−1)+0.41(4b2
−13b11a2

−1) 0.0129 23.05

−0.26(7a1
−13b12b1

−1)−0.26(1a2
−13b13b2

−1)−0.21(4b2
−16b28a1

−1)

A1 0.60(4b2
−13b11a2

−1)−0.31(4b2
−15b28a1

−1)−0.27(1a2
−13b14b2

−1) 0.0181 23.09

−0.21(8a1
−15b24b2

−1)

A1 0.61(4b2
−15b28a1

−1)+0.59(4b2
−13b11a2

−1)+0.37(4b2
−16b28a1

−1) 0.0157 23.16

+0.37(1a2
−13b14b2

−1)+0.27(8a1
−16b24b2

−1)+0.26(4b2
−110b28a1

−1)

+0.25(8a1
−15b24b2

−1)−0.20(7a1
−13b12b1

−1)

B2 0.90(4b2
−16b24b2

−1)+0.67(4b2
−15b24b2

−1)−0.34(8a1
−15b28a1

−1) 0.0144 23.44

+0.25(4b2
−110b24b2

−1)−0.23(8a1
−16b28a1

−1)+0.21(4b2
−18b24b2

−1)

A1 0.82(2b1
−15b21a2

−1)+0.35(2b1
−16b21a2

−1)−0.31(2b1
−19a12b1

−1) 0.0212 23.56

−0.30(2b1
−110a12b1

−1)+0.23(1a2
−15b22b1

−1)

A1 0.50(2b1
−110a12b1

−1)+0.49(2b1
−19a12b1

−1)−0.41(2b1
−112a12b1

−1) 0.0584 23.71

−0.40(2b1
−111a12b1

−1)−0.32(1a2
−15b22b1

−1)−0.27(1a2
−16b22b1

−1)

+0.24(2b1
−15b21a2

−1)+0.24(5a1
−1)−0.23(6a1

−13b12b1
−1)

A1 0.66(2b1
−19a12b1

−1)+0.60(1a2
−16b22b1

−1)+0.51(2b1
−16b21a2

−1) 0.0134 23.78

+0.47(1a2
−15b22b1

−1)−0.23(2b1
−112a12b1

−1)−0.20(2b1
−19a11b1

−1)

A1 0.58(1a2
−15b22b1

−1)−0.57(2b1
−111a12b1

−1)+0.40(2b1
−15b21a2

−1) 0.0096 24.01

−0.35(2b1
−16b21a2

−1)−0.24(2b1
−112a12b1

−1)+0.22(2b1
−111a11b1

−1)

+0.21(2b1
−17b21a2

−1)+0.20(2b1
−19a11b1

−1)

0.76(2b1
−13b13b2

−1)−0.28(8a1
−15b28a1

−1) 0.0111 24.52

A1 0.76(8a1
−16b24b2

−1)+0.21(4b2
−16b28a1

−1)−0.20(8a1
−112b24b2

−1) 0.0505 24.64

−0.20(4a1
−1)
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shoulder in the high-energy region. We propose these states should correspond to

this shoulder in the experimental spectrum. In the energy region higher than 17 eV,

two prominent peaks were observed at about ∼17.7 and ∼19.6 eV. We assign these

peaks to (6a1)
−1 and (2b2)

−1 states calculated at 17.70 and 20.07 eV, respectively,

and the latter state has the character of two-electron process. These two peaks

were not assigned in the He I PES work [4]. Above these two states, complete

breakdown of Koopmans’s picture was obtained in the present calculation: many

correlation peaks continued in 21 ∼ 24 eV as shown in Table III. Two satellites were

found as the shoulder of (2b2)
−1 state at 20.76 and 21.01 eV, which are 2B2 and 2A1

states, respectively. The (5a1)
−1 state split into twining peaks at 22.26 and 22.64

eV: for these state, many shake-up configurations contribute and their intensities

are mainly due to the final-state correlation interactions. Many shake-up states of

2A1 symmetry follow in the 23 ∼ 25 eV region with small intensities. These states

have their intensities through the interaction with the (5a1)
−1 state.

7.3.2 trans-acrolein

The outer-valence region of trans-acrolein has been intensively studied; the PES

was measured using He I by Kimura et al. [4] and using He II [5] by von Niessen

et al. Theoretical assignments were done by the Green’s function [6] and the CI [7]

calculations. The experimental assignment was also proposed using PIES by Ohno

et al[8]. In the present work, the general-R method was applied to the spectrum

up to ∼ 22 eV. For this energy region, fifteen solutions were obtained for each

symmetry of Cs and therefore, the SAC-CI dimension were about 20,000 as shown

in Table II. Table IV shows the results of binding energies, monopole intensities

and characters of the valence-ionized states, whose intensities are larger than 0.005.

Note that there are many other states with small intensities not listed in Table

IV. In Fig. 2, we compare the spectrum by He II PES and the present theoretical

spectrum with convolution using Gaussian of the fwhm of 0.05 ×∆E (in eV). For

the first two peaks observed at 10.10 and 10.92 eV by He I PES [4], we assign A′

and A′′ states calculated at 9.62 and 10.54 eV, respectively. The ordering due to
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Figure IV: Outer-valence ionization spectra of trans-acrolein by (a) He I PES and

(b) SAC-CI general-R
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(a) He I PES

(b) SAC-CI general-R
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Fig. 1. Outer-valence ionization spectra of acrolein by (a) He I 
PES and (b) SAC-CI general-R
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TABLE IV: Calculated ionization potentials (IP, in eV), monopole intensities (M.I.),

and main configurations with the basis set for trans-acrolein by SAC-CI general-R.

Sym. Main Configuration(|C| > 0.2) M.I. IP Expt.

A′ 0.92(13a′−1)−0.20(2a′′−13a′′13a′−1) 0.8638 9.62 10.10

A′′ 0.95(2a′′−1) 0.9143 10.50 10.92

0.91(1a′′−1)−0.27(2a′′−13a′′1a′′−1)+0.21(2a′′−13a′′2a′′−1) 0.8404 13.60 13.7

A′ 0.92(12a′−1) 0.8738 13.64 13.7

0.91(11a′−1) 0.8732 14.42 14.6

1.03(13a′−13a′′2a′′−1)+0.54(2a′′−13a′′13a′−1)+0.25(13a′−13a′′1a′′−1) 0.0126 15.47 ∼ 15.5

0.70(10a′−1)+0.51(9a′−1) 0.7856 15.85 16.3

0.71(9a′−1)−0.53(10a′−1)−0.21(2a′′−13a′′11a′−1) 0.8327 15.97 16.3

−0.20(11a′−1)

A′ 0.70(2a′′−13a′′13a′−1)+0.38(2a′′−14a′′13a′−1)+0.28(1a′′−13a′′13a′−1) 0.0958 17.62

A′′ 1.15(2a′′−13a′′2a′′−1)−0.31(1a′′−13a′′1a′′−1)−0.25(2a′′−13a′′1a′′−1) 0.0505 18.32

−0.25(2a′′−14a′′1a′′−1)+0.25(2a′′−17a′′2a′′−1)−0.23(1a′′−13a′′2a′′−1)

−0.21(2a′′−14a′′2a′′−1)

A′ 0.82(8a′−1)−0.29(13a′−14a′′2a′′−1)+0.20(2a′′−13a′′12a′−1) 0.6898 19.03 ∼ 18.8

0.94(13a′−14a′′2a′′−1)+0.46(2a′′−14a′′13a′−1)+0.28(12a′−13a′′2a′′−1) 0.0411 19.06

−0.25(13a′−17a′′2a′′−1)+0.25(13a′−14a′′1a′′−1)

A′ 0.59(12a′−13a′′2a′′−1)+0.56(13a′−13a′′1a′′−1)+0.31(13a′−14a′′1a′′−1) 0.0902 19.53

−0.29(8a′−1)+0.25(2a′′−13a′′12a′−1)−0.24(12a′−13a′′1a′′−1)

+0.21(10a′−13a′′2a′′−1)+0.21(1a′′−13a′′13a′−1)

A′′ 0.75(2a′′−14a′′2a′′−1)−0.67(2a′′−13a′′1a′′−1)−0.36(2a′′−14a′′1a′′−1) 0.0437 20.32

−0.29(2a′′−13a′′2a′′−1)−0.28(2a′′−17a′′2a′′−1)−0.26(1a′′−13a′′1a′′−1)

−0.26(1a′′−13a′′2a′′−1)−0.24(1a′′−14a′′1a′′−1)

A′ 0.75(11a′−13a′′2a′′−1)−0.44(12a′−13a′′2a′′−1)+0.42(9a′−13a′′2a′′−1) 0.0189 20.68

+0.40(2a′′−13a′′11a′−1)+0.28(2a′′−13a′′9a′−1)+0.22(13a′−14a′′1a′′−1)

+0.22(13a′−13a′′1a′′−1)+0.20(12a′−14a′′2a′′−1)−0.20(2a′′−13a′′12a′−1)

A′ 0.71(7a′−1)−0.38(2a′′−14a′′13a′−1)+0.23(2a′′−13a′′13a′−1) 0.5066 20.85

0.56(11a′−13a′′2a′′−1)+0.55(12a′−13a′′2a′′−1)−0.37(13a′−13a′′1a′′−1) 0.0127 20.93

−0.36(13a′−14a′′1a′′−1)−0.33(12a′−14a′′2a′′−1)+0.30(2a′′−13a′′11a′−1)

+0.24(2a′′−13a′′12a′−1)

0.82(1a′′−13a′′2a′′−1)+0.25(1a′′−13a′′1a′′−1)−0.24(1a′′−14a′′2a′′−1) 0.0060 21.54

A′ 0.56(2a′′−14a′′13a′−1)+0.44(7a′−1)−0.29(2a′′−13a′′13a′−1) 0.2007 21.55

−0.24(12a′−13a′′1a′′−1)−0.21(1a′′−13a′′12a′−1)

0.78(12a′−13a′′1a′′−1)+0.42(10a′−13a′′2a′′−1)+0.40(1a′′−13a′′12a′−1) 0.0469 21.89

+0.29(12a′−14a′′1a′′−1)−0.27(12a′−14a′′2a′′−1)+0.23(2a′′−13a′′10a′−1)

+0.21(7a′−1)−0.20(10a′−13a′′1a′′−1)
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Koopman’s theorem is wrong for these states. This assignment was also proposed

by recent PIES [8]. For the next overlapping peaks at 13.7 eV, we calculated (1a′′)−1

and (12a′)−1 states at 13.60 and 13.64 eV, respectively. The effect of the electron

correlations were found to be large for A′ states. We calculated (11a′)−1 state at

14.42 eV in accordance with the peak observed at 14.6. In the higher-energy region

of this peak, uncertain correlation peak (∼15.5 eV) was measured by He I PES.

Accordingly, we calculated shake-up state at 15.47 eV with small intensity of ∼
0.01. Then, the overlapping band follows at 16.6 eV. We calculated two A′ states

for this band and these states are described by the linear combination of (10a′)−1 and

(9a′)−1. In the higher energy region of the peak at 16.6 eV, many shake-up states

were calculated. The (8a′)−1 and (7a′)−1 were obtained at 19.03, 20.85 and 21.55

eV with relatively small intensities: these intensities are distributed to the shake-up

states through the final-state correlation interactions. Two satellites were obtained

in between the (9a1)
−1 and (8a1)

−1 states and it seems that small structure exist

in this energy region of He I PES. The (7a1)
−1 peak split into twinning peaks with

large energy separation. Two electron processes in this energy region accompanies

the excitation to the 3a′′ or 4a′′ MOs, which are the π∗ orbitals.

7.4 Conclusion

The SAC-CI general-R method has been applied to methylenecyclopropane and

trans-acrolein to investigate their electronic structure in detail for assignment of

the outer-valence ionization spectra. The method has successfully reproduced the

spectrum shape of the PES of these molecules and the detailed characterization for

both main peaks and satellite peaks has been proposed. For methylenecyclopropane,

three shake-up states with considerable intensity were calculated at around 17 eV.

Strong peaks at 17.7 and 19.7 eV were attributed to the (6a1)
−1 and (2b2)

−1 states,

respectively. The remarkable breakdown of the Koopman’s picture has been found

for (5a1)
−1 state at c.a. 22 eV and the twinning peaks were obtained. For trans-

acrolein, a CI state was calculated in between the peaks 5 and 6 in agreement with

the He I PES. Many shake-up states were also obtained in the energy region of
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17 ∼ 22 eV, whose intensities were originated in (8a′)−1 and (7a′)−1 states.
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