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1. Objective

We are interested in realizing the variational calcu-
lation with the 2-order Reduced Density Matrix (2-
RDM) for fermionic systems. Some known necessary
N-representability conditions are imposed, resulting in
an optimization problem called semidefinite program-
ming (SDP) problem. The utilization of exiting soft-
ware to solve these SDP problems permits one to for-
mulate the problem as a primal SDP problem [6] or
as a dual SDP problem |5, 7]. We show here that the
dual SDP formulation is advantageous in all compu-
tational aspects. This presentation is complemented
by the poster presentation PP 089 by Maho Nakata
which contains the actual computational results.

2. The Reduced Density Ma-
trix Method

The Hamiltonian of an /N-particle fermionic system in
the second quantized form 1S
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Then, the total energy of some N-particle state |V) is

given by:
=D v+ ) w

= (V|H|V)
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= tr(vy) + tr(wl),
where v is the One-particle Reduced Density Matrix
(1-RDM):
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and I is the Two-particle Reduced Density Matrix (2-
RDM):
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The ground state energy £, can be obtained by:
Ey = min(V|H|V) = min {tr(vy) + tr(wl)},
1 ~,I'

where the wavefunction W must satisty the antisym-
metry condition:

U(1,2,... 4, 4, ..., N) =
_\Ij<1727°°°7j7°°‘77:7 7N)

The notion of the N-representability for the 2-RDM
(and 1-RDM) is understood as follows.
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Given an 2-RDM T (and an 1-RDM =), there ex-
ists some wavefunction (pure representability) or
some von Neumann density matrix (ensemble rep-
resentability) corresponding to it.

Therefore, in principle, we can determine the ground
state energy solving the following variational calcula-
tion for the unknowns « and T'.

minimize tr(vvy)+ tr(wl)
subject to ~,I' € N-representable set

3. Known N-Representability

Conditions
The following N-representability
semidefinitiness type are known:

conditions of
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kth-order approximation: Erdahl-Jin 2000
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1s the Kronecker’s delta.

=" Erdahl 1978,
203

4. The N-Representability
Problem is Extremely Difficult

Unfortunately, it is well-known that determining
all the sufficient N-representability conditions is ex-
tremely difficult. If we restrict ourselves to determine
only the N-representability conditions for the diagonal
elements of the 2-RDM, the problem is equivalent to
determining all the facets of the cut polytope, which
is NP-hard [1]. More recently, it was shown that de-

ciding if a given 2-RDM is N-representable or not is
QMA-complete (3], thus NP-hard.

D. Variational Calculation
by Semidefinite Programming

Problems

If we only impose the necessary [N-representability
conditions, we can obtain a lower bound for the ground
state energy and approximated 1- and 2-RDMs |5].

( minimize tr(vy)+ tr(wl)
subject to P,Q,G,T1, T2 conditions
on v and I
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6. Semidefinite Programming

Problems and Interior-Point
Methods

The primal SDP problem is defined as follows:

( 14
minimize Ztr(Cz- )
1=1
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Primal { subject to Ztr(Az-p ) = by,
- (1<p<m)
= O,

(1<i<Y)
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and the equivalent dual SDP problem as follows:

( m
maximize pr
p=1
m
Dual < subject to ZAW + 5, =0C},
p=1
(1< <0
= O,
(1<1<0)
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where C;, Aj1,---, A;yy, € S™ (1 <1< f), beR"
are given data, 8™ is the space of n X n-symmetric
matrices, and X > O means that X is symmetric
positive.

It is known that SDP problems can be solved very
eficiently by primal-dual interior-point methods.

The existing software to solve SDP problems are:

e SDPA 7.1.1] (June, 2008)

K. Fujisawa, M. Fukuda, K. Kobayashi,
K. Nakata, M. Nakata, and M. Yamashita

M. Kojima,

http://sdpa.indsys.chuo-u.ac.jp/sdpa/

e SDPARA 1.0.1](2005)
K. Fujisawa, M. Kojima, and M. Yamashita

http://sdpa.indsys.chuo-u.ac.jp/sdpa/

e SeDuMi 1.2 (April, 2008)
McMaster Group

http://sedumi.mcmaster.ca/

e SDPT3 4.08 (2006)
K.-C. Toh, M. J. Todd, and R. H. Ttutincu
http:/ /www.math.nus.edu.sg/~mattohkc/sdpt3.html

e CSDP 6.0.1
B. Borchers

https://projects.coin-or.org/Csdp/

e PENNON (commercial)
M. Kocvara, and M. Stingl

http:/ /www.penopt.com/

7. Primal and Dual SDP For-
mulations

One of the most important factors to consider when
solving these problems using the exiting software is to
notice that we can mathematically formulate the SDP
problem arising from the RDM Method as a primal
SDP formulation [6] or as a dual SDP formulation |5,
7].

8. Example of Primal SDP

Formulation for a Fermionic
System with N electrons with
P and () conditions on the 2-
RDM

Consider the following problem

minimize tr(wl)
subject to tr(NI') = N,

=0, Q=O0,

where w is the 2-body Hamiltonian, and N is the
number operator.

We can formulate this problem as a standard SDP
formulation using the following simple linear transfor-
mations:

{P—QI‘EO <:>f,_<I‘ 0)&0.

Q-0 OQ
) w0\ < N O
Let w = , N = :
O 0O OO0
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where By = 1/2, for (j1 + (jo — D)ryiy + (g — 1)r),
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and r is the # of spin orbitals or rank. Then, we
have:

( minimize tr(wI)

subject to tr(NT') = N,

9 tr<Ai1i2,J132 > 5;15;3 521522 lsuspsr

J27 17 .
1< < pp<r

T >~ O.
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which is in primal SDP formulation.

9. SDP Sizes in Primal SDP

Formulation
dimensions of matrices n;
Pl (/22 x (r/2)? (1 block), (7“;2) < (Tf) (2 blocks)
Q | (r/2)? x (r/2)? (1 block), (Tf) x (Tf) (2 blocks)
G 2(r/2)? x 2(r/2)? (1 block), (r/2)* x (r/2)? (2 blocks)
# of constraints m
P7Q7G5+3<r2/42+1) +2(7~(7~/2—21)/4+1) N (r2/22+1)

where (Z) = (a!)/(b!(a — b)!), 7 spin orbitals or rank.
That is:

P.Q.G | PQ,G,T1 PQ,G,T1,T2
r m 1;(max) m MN;(max) m N;(max)
8 983 32 1603 24 10971 92
10 2365 o0 5025 50 40685 110
12 4871 72 13481 90 120449 312
14 8993 98 32009 147 303385 497
16 15313 128 68905 2240 677241 744
18 24503 162 136943 324 1377071 1062
20 37325 200 254795 4500 2599915 1460
22 54631 242 448651 605 4621479 1947
24 77363 288 754039 792 7814815 2532
26106553 3381217845 101412671001 3224
28143323 3921900533 127419821821 4032
30188885 4502878565 157530064445 4965

10. Formulation in Dual SDP
Formulation

After some inspection, it becomes clear that the most
advantageous formulation is to formulate as the dual
SDP format |2, 7]. For that, it is necessary to view
each coordinate of the variables, that is, 1-RDM ~
and 2-RDM T, as the coordinates of the dual variable
vector y.

11. SDP Sizes in Dual SDP
Formulation

dimensions of matrices n;

Pl (/22 x (r/2)2 (1 block), (Tf) < (Tf) (2 blocks)

O (r/2)2 x (r/2)% (1 block), (Tf) < (Tf) (2 blocks)
G 2(r/2)? x 2(r/2)* (1 block), (r/2)? x (r/2)* (2 blocks)

T1p ( 7452 ) x ( 7442 ) (2 blocks), ( TQQ ) x ( T?/)Q ) (2 blocks)

# of constraints m

any| (7“2/42+1>+2(r(r/2—21)/4+1) and 5
That is,

P,Q,GP,.Q.G.T1P,.Q.G,T1, T2
r m S| 1N;(max) T ;(max) T (max)
8 1785 32 24 92
10 4355 50 50 180
12 906 5 72 90 312
14 1687 5 o 147 497
16 2892 5 128 224 744
1§ 4653 5 162 324 1062
20 7120 5 200 450 1460
2210461 5 242 605 1947
24114862 5 283 792 2032
2620027 5 338 1014 3224
2827678 5 392 1274 4032
3086555 5 450 1575 4965

12. Floating-Point Opera-
tions and Memory Usage by

PDIPM [5, 6] and RRSDP [4]

N-representability
conditions

P.Q G

formulationplgorithmFLOPI # iterations memory
primal SDPPDIPM | 72 rlne™! 7o
formulationRRSDP | 0 7 7
dual SDP  PDIPM | 72 rlne™! ro
formulation RRSDP | #Y 7 r
N-representability P.Q, G, T1or

conditions P.Q. G, T1, 1

formulationjalgorithmFLOPT # iterations memory

primal SDPPDIPM | 718  p3/2]pg—1  plL2

formulationRRSDP | 79 ? 0

dual SDP PDIPM | ri2  #3/2pe—t 8

formulation RRSDP | 7Y ? 0
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Appendix: Incomplete List on
the 2-RDM Computation

1940 Husimi 1955 Lowdin 1955 Mayer RDM
1960 Coulson 2-RDM
1963 Coleman N-representability conditions
1964 Garrod-Percus (G condition
1960s-1970'sKijewski, Garrod-Mihailovi¢-Rosina, Garrod-Fusco

Erdahl Ist computations
1975 Mihailovi¢-Rosina nucleon systems
2001 Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa

(JCP 114 8282) complete computations
2002 Nakata-Ehara-Nakatsuji

(JCP 116 5432) potential energy surface
2002 Mazziotti (PRA 65 062511)
2004 Zhao-Braams-Fukuda-Overton-Percus

(JCP 120 2095) T1,7T2
2004 Mazziotti (PRL 93 213001) RRSDP
2006 Cances-Stoltz-Lewin (JCP 125 064101) dual
2007 Braams-Percus-Zhao (ACP vol. 134) T?2" condition
2006,2007  Magziotti

(PRA 74 32501, ACP vol. 134) T2 condition
2008 Nakata-Braams-Fujisawa-Fukuda-Percus-Yamashita-Zhao

(JCP 128 164113) T2’ condition
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