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Motivation

We would like to do chemistry without experiments.
Ultimate goals are...

Prediction and design of chemical reaction.

• What happens if we mix substance A and B?
• CO2 conversion.
• Drug design ...

etc..
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What is chemistry?

Everything involves chemistry.
You are made from ...huge number of mixture of
Hydrogen, Oxygen, Carbon ...
Physical point of view to have basic equation...

Electrons
Nuclei (protons and neutrons)



What is chemistry?

Everything involves chemistry.
You are made from ...huge number of mixture of
Hydrogen, Oxygen, Carbon ...
Physical point of view to have basic equation...

Electrons

Nuclei (protons and neutrons)



What is chemistry?

Everything involves chemistry.
You are made from ...huge number of mixture of
Hydrogen, Oxygen, Carbon ...
Physical point of view to have basic equation...

Electrons
Nuclei (protons and neutrons)



Basic Equation for Chemistry

Schrödinger equation

HΨ = EΨ

H: Hamiltonian: the information of the system,
Ψ: wavefunction: complete information of the
molecule or atom.
E: energy of the molecule or atom.

We can predict everything from Ψ and E.
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The Schrödinger equation

The Hamiltonian H of the molecular system is:

H =
N∑

j=1

(
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)
+

∑
i> j
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The Schrödinger equation (ground state)

HΨ(1, 2, · · · N) = EminΨ(1, 2, · · · N)

The Pauli principle:
wavefunction is antisymmetric

Ψ(· · · , i, · · · , j, · · · ) = −Ψ(· · · , j, · · · , i, · · · )
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Problems ...

Solving the Schrödinger equation is too difficult.

The general theory of quantum
mechanics is now almost com-
plete. · · · the whole of chemistry
are thus completely known, and
the difficultly is only that the exact
application of these laws leads to
equations much too complected
to be soluble.

[Dirac 1929] “Quantum Mechanics of Many-Electron Systems.”
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The two-particle reduced density matrix

Everything can also be calculated via the
two-particle reduced density matrices:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Nakatsuji 1976]

Γ(12|1′2′) =
(
N
2

) ∫
Ψ∗(123 · · · N)Ψ(1′2′3 · · · N)dµ3···N

Can we construct an alternative quantum chemical
method using Γ(12|1′2′) as a basic variable?

®
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Scaling

Approach # of variables (discritized) Exact?
Ψ N, (r!) Yes

Γ(12|1′2′) 4, (r4) Yes

Very good scaling!
Equivalent to the Schrödinger equation
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The RDM Method

Hamiltonian H:
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The RDM Method
Here we defined:

The second order reduced density matrix (2-RDM)
Γ(12|1′2′) and

Γ(12|1′2′) =
(
N
2

) ∫
Ψ∗(123 · · · N)Ψ(1′2′3 · · · N)dµ3···N

The first order reduced density matrix (1-RDM)
γ(1|1′)

γ(1|1′) = N
∫
Ψ∗(123 · · · N)Ψ(1′2 · · · N)dµ2···N
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N-representability condition
The ground state energy is calculated by:

Emin = min
||Ψ||=1

∫
Ψ∗HΨdµ

= min
γ,Γ

∫
v1γ(1|1′)dµ1 +

∫
w12Γ(12|1′2′)dµ1dµ2

[Mayers 1955], [Tredgold 1957]: Obtained far lower energy
N-representability condition [Coleman:1963]

Γ(12|1′2′) → Ψ(123 · · · N)

γ(1|1′) → Ψ(123 · · · N)



N-representability condition
The ground state energy is calculated by:

Emin = min
||Ψ||=1

∫
Ψ∗HΨdµ

= min
γ,Γ

∫
v1γ(1|1′)dµ1 +

∫
w12Γ(12|1′2′)dµ1dµ2

[Mayers 1955], [Tredgold 1957]: Obtained far lower energy
N-representability condition [Coleman:1963]

Γ(12|1′2′) → Ψ(123 · · · N)

γ(1|1′) → Ψ(123 · · · N)



N-representability condition
The ground state energy is calculated by:

Emin = min
||Ψ||=1

∫
Ψ∗HΨdµ

= min
γ,Γ

∫
v1γ(1|1′)dµ1 +

∫
w12Γ(12|1′2′)dµ1dµ2

[Mayers 1955], [Tredgold 1957]: Obtained far lower energy

N-representability condition [Coleman:1963]

Γ(12|1′2′) → Ψ(123 · · · N)

γ(1|1′) → Ψ(123 · · · N)



N-representability condition
The ground state energy is calculated by:

Emin = min
||Ψ||=1

∫
Ψ∗HΨdµ

= min
γ,Γ

∫
v1γ(1|1′)dµ1 +

∫
w12Γ(12|1′2′)dµ1dµ2

[Mayers 1955], [Tredgold 1957]: Obtained far lower energy
N-representability condition [Coleman:1963]

Γ(12|1′2′) → Ψ(123 · · · N)

γ(1|1′) → Ψ(123 · · · N)



N-representability condition

• “Is this 2-RDM N-representable?” NP-hard
[Deza Laurent 1997][Liu et al. 2007]

• Approximation is important
• P, Q-condition [Coleman 1963]

• G-condition [Garrod et al. 1964]
• T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]
• Very good for atoms and molecules [Garrod et al

1975, 1976] [Nakata et al. 2001, 2002], [Zhao et
al. 2004], [Mazziotti 2004]

• Known “good” approximations are usually
semidifinite relaxation.
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Semidefinite relaxation to the
N-representability condition

Well known N-representability conditions are
usually non-negativity of 2-RDM and linearly
transformed 2-RDM.

Γ(12|1′2′) � 0

−Γ(11′|22′) + δ(2 − 1′)γ(1|2′) � 0

etc.

Semidefinite programming. [Nakata et al 2001,
2002]
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Results for atoms and molecules
[Nakata, Braams, Fujisawa, Fukuda, Percus, Yamashita, Zhao, J. Chem. Phys. 2008]

The ground state energies of atoms and molecules by various methods.
System State N r ∆ EGT1T2′ ∆ ECCSD(T) ∆ EHF EFCI
C 3 P 6 20 −0.0001 +0.00016 +0.05202 −37.73653
O 1 D 8 20 −0.0012 +0.00279 +0.10878 −74.78733
Ne 1S 10 20 −0.0001 −0.00005 +0.11645 −128.63881
O+

2
2Πg 15 20 −0.0020 +0.00325 +0.17074 −148.79339

BH 1Σ+ 6 24 −0.0001 +0.00030 +0.07398 −25.18766
CH 2Πr 7 24 −0.0003 +0.00031 +0.07895 −38.33735
NH 1∆ 8 24 −0.0004 +0.00437 +0.11495 −54.96440
HF 1Σ+ 14 24 −0.0003 +0.00032 +0.13834 −100.16031
F− 1S 10 26 −0.0003 +0.00067 +0.15427 −99.59712
H2O 1 A1 10 28 −0.0004 +0.00055 +0.14645 −76.15576

GT1T2 : the RDM method with P,Q,G, T1, T2′ condition
CCSD(T) : Coupled cluster singles and doubles with perturbational treatment of triples
HF : Hartree-Fock (mean field approximation)
FCI : FullCI(the exact value with given basis)



How large SDPS are they?

Number of constraints, blocks (stnadard dual type SDP)
r # of constraints blocks

24 15018 2520x2, 792x4, 288x1,220x2
26 20709 3211x2, 1014x4, 338x1, 286x2

Timing using Itanium 2 (1.3GHz) four processors per node.
System, State, Basis r Solver Time Proc.
SiH4, 1 A1, STO-6G 26 SDPARA 5.1 days 16
H2O, 1 A1, double-ζ 28 SDPARA 2.2 hours 8
H2O, 1 A1, double-ζ 28 SDPARA 20 days 8
H2O, 1 A1, double-ζ 28 SDPARA 24 days 8



Ultra highly accurate SDP solver
At the strong correlation limit(|U/t| → ∞), the ground state of
the Hubbard model becomes degenerated, thus we need
multiple arithmetic version of SDP solver (SDPA-GMP)

The ground state energies of 1D Hubbard model
PBC, Sites:4, Electrons: 4, Spin: 0

U/t SDPA (double) SDPA-GMP (PQG) fullCI
10000.0 0 −1.1999998800000251 × 10−3 −1.199999880 × 10−3

1000.0 −1.2 × 10−2 −1.1999880002507934 × 10−2 −1.1999880002 × 10−2

100.0 −1.1991 × 10−1 −1.1988025013717993 × 10−1 −1.19880248946 × 10−1

10.0 −1.1000 −1.0999400441222934 −1.099877772750
1.0 −3.3417 −3.3416748070259956 −3.340847617248

PBC, Sites:6, Electrons: 6, Spin: 0
U/t SDPA (double) SDPA-GMP (PQGT1T2) fullCI

10000.0 0 −1.7249951195749525 × 10−3 −1.721110121 × 10−3

1000.0 −1 × 10−2 −1.7255360310431304 × 10−2 −1.7211034713 × 10−2

100.0 −1.730 × 10−1 −1.7302157140594339 × 10−1 −1.72043338097 × 10−1

10.0 −1.6954 −1.6953843276854447 −1.664362733287
1.0 −6.6012 −6.6012042217806286 −6.601158293375



Current problems

• Usually the size of problems becomes
extremly large in SDP.

• Moreover, still we cannot solve midium sized
molecules with the RDM method where the
traditional methods can solve in seconds; too
large SDP!

• Chemist intersted in large/huge systems like
protein, DNA...



Summary
• The RDM method is a promising candidate to

a simpler and exact method of chemistry.
• N-representability condition is the major

obstacle, and can be cast as semidefinite
programming.

• Semidefintite relaxation works very nicely;
almost comparable to the exact results.

• Development and application of SDPA-GMP
(multiple pricision arithmetic version of SDP
solver) for degenerated systems.

• Future direction: development of SDP for
quantum chemistry.


