Large Scale Semidefinite Programming Arising from Chemistry

Nakata, Maho maho@riken.jp

RIKEN (The Institute of Physical and Chemical Research)

2008/5/10

Overview

- Motivation
- The Shördinger equation: fundamental equation of Chemistry
- The RDM method; a candidate to a simple quantum chemical theory
- Some recent results
- Summary

Motivation

Motivation

We would like to do chemistry without experiments.

Motivation

We would like to do chemistry without experiments. Ultimate goals are...

Motivation

We would like to do chemistry without experiments. Ultimate goals are...
Prediction and design of chemical reaction.

- What happens if we mix substance A and B ?
- CO_{2} conversion.
- Drug design ...
etc.

What is chemistry?

Everything involves chemistry. You are made from ...huge number of mixture of Hydrogen, Oxygen, Carbon ...
Physical point of view to have basic equation...

What is chemistry?

Everything involves chemistry. You are made from ...huge number of mixture of Hydrogen, Oxygen, Carbon ...
Physical point of view to have basic equation...
Electrons

What is chemistry?

Everything involves chemistry.
You are made from ...huge number of mixture of Hydrogen, Oxygen, Carbon ...
Physical point of view to have basic equation...
Electrons
Nuclei (protons and neutrons)

Basic Equation for Chemistry

Basic Equation for Chemistry

Schrödinger equation

Basic Equation for Chemistry

Schrödinger equation

$$
H \Psi=E \Psi
$$

Basic Equation for Chemistry

Schrödinger equation

$$
H \Psi=E \Psi
$$

\boldsymbol{H} : Hamiltonian: the information of the system,

Basic Equation for Chemistry

Schrödinger equation

$$
H \Psi=E \Psi
$$

\boldsymbol{H} : Hamiltonian: the information of the system, Ψ : wavefunction: complete information of the molecule or atom.

Basic Equation for Chemistry

Schrödinger equation

$$
H \Psi=E \Psi
$$

\boldsymbol{H} : Hamiltonian: the information of the system, $\boldsymbol{\Psi}$: wavefunction: complete information of the molecule or atom.
\boldsymbol{E} : energy of the molecule or atom.
We can predict everything from $\boldsymbol{\Psi}$ and \boldsymbol{E}.

The Schrödinger equation

The Schrödinger equation

The Hamiltonian \boldsymbol{H} of the molecular system is:

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

The Schrödinger equation (ground state)

The Schrödinger equation

The Hamiltonian \boldsymbol{H} of the molecular system is:

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

The Schrödinger equation (ground state)

$$
H \Psi(1,2, \cdots N)=E_{\min } \Psi(1,2, \cdots N)
$$

The Schrödinger equation

The Hamiltonian \boldsymbol{H} of the molecular system is:

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \nabla_{j}^{2}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

The Schrödinger equation (ground state)

$$
H \Psi(1,2, \cdots N)=E_{\min } \Psi(1,2, \cdots N)
$$

The Pauli principle: wavefunction is antisymmetric

$$
\Psi(\cdots, i, \cdots, j, \cdots)=-\Psi(\cdots, j, \cdots, i, \cdots)
$$

Problems ...

Solving the Schrödinger equation is too difficult.

Problems ...

Solving the Schrödinger equation is too difficult.

The general theory of quantum mechanics is now almost complete. ... the whole of chemistry are thus completely known, and the difficultly is only that the exact application of these laws leads to equations much too complected to be soluble.
[Dirac 1929] "Quantum Mechanics of Many-Electron Systems."

The two-particle reduced density matrix

The two-particle reduced density matrix

Everything can also be calculated via the two-particle reduced density matrices:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$

The two-particle reduced density matrix

Everything can also be calculated via the two-particle reduced density matrices:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$
Can we construct an alternative quantum chemical method using $\Gamma\left(\mathbf{1 2 | 1} \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$ as a basic variable?

The two-particle reduced density matrix

Everything can also be calculated via the two-particle reduced density matrices:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$
Can we construct an alternative quantum chemical method using $\Gamma\left(\mathbf{1 2 |} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$ as a basic variable?

Yes

Scaling

Scaling

Approach \# of variables (discritized) Exact?
 Ψ
 $\Gamma\left(\mathbf{1 2 |} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$
 $N,(r!)$
 4, $\left(r^{4}\right)$
 Yes
 Yes

Very good scaling!

Scaling

Approach \# of variables (discritized) Exact?
 Ψ
 $\Gamma\left(\mathbf{1 2 |} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$
 $N,(r!)$
 4, $\left(r^{4}\right)$
 Yes
 Yes

Very good scaling!
Equivalent to the Schrödinger equation

The RDM Method

The RDM Method

Hamiltonian \boldsymbol{H} :

$$
H=\sum_{i} v_{i}+\sum_{i<j} w_{i j}
$$

where

$$
\begin{gathered}
v_{i}=-\frac{\hbar^{2} \nabla_{i}^{2}}{2 m}-e^{2} \sum_{g} \frac{Z_{g}}{4 \pi \epsilon_{0} r_{i g}} \\
w_{i j}=\frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
\end{gathered}
$$

The RDM Method

Hamiltonian \boldsymbol{H} :

$$
H=\sum_{i} v_{i}+\sum_{i<j} w_{i j}
$$

where

$$
\begin{gathered}
v_{i}=-\frac{\hbar^{2} \nabla_{i}^{2}}{2 m}-e^{2} \sum_{g} \frac{Z_{g}}{4 \pi \epsilon_{0} r_{i g}} \\
w_{i j}=\frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
\end{gathered}
$$

Then, the total energy \boldsymbol{E} becomes

$$
E=\int v_{1} \gamma\left(1 \mid 1^{\prime}\right) d \mu_{1}+\int w_{12} \Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right) d \mu_{1} d \mu_{2}
$$

The RDM Method

Here we defined:

The RDM Method

Here we defined:
The second order reduced density matrix (2-RDM) $\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)$ and
$\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$

The RDM Method

Here we defined:
The second order reduced density matrix (2-RDM) $\Gamma\left(12 \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$ and
$\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$
The first order reduced density matrix (1-RDM) $\gamma\left(\mathbf{1} \mid \mathbf{1}^{\prime}\right)$

$$
\gamma\left(1 \mid 1^{\prime}\right)=N \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2 \cdots N\right) d \mu_{2 \cdots N}
$$

N-representability condition

The ground state energy is calculated by:

N-representability condition

The ground state energy is calculated by:

$$
\begin{aligned}
E_{\min } & =\min _{\|\Psi\|=1} \int \Psi^{*} H \Psi d \mu \\
& =\min _{\gamma, \Gamma} \int v_{1} \gamma\left(\mathbf{1} \mid \mathbf{1}^{\prime}\right) d \mu_{1}+\int w_{12} \Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right) d \mu_{1} d \mu_{2}
\end{aligned}
$$

N-representability condition

The ground state energy is calculated by:

$$
\begin{aligned}
E_{\min } & =\min _{\|\Psi\|=1} \int \Psi^{*} H \Psi d \mu \\
& =\min _{\gamma, \Gamma} \int v_{1} \gamma\left(1 \mid 1^{\prime}\right) d \mu_{1}+\int w_{12} \Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right) d \mu_{1} d \mu_{2}
\end{aligned}
$$

[Mayers 1955], [Tredgold 1957]: Obtained far lower energy

N-representability condition

The ground state energy is calculated by:

$$
\begin{aligned}
E_{\min } & =\min _{\|\Psi\|=1} \int \Psi^{*} H \Psi d \mu \\
& =\min _{\gamma, \Gamma} \int v_{1} \gamma\left(1 \mid 1^{\prime}\right) d \mu_{1}+\int w_{12} \Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right) d \mu_{1} d \mu_{2}
\end{aligned}
$$

[Mayers 1955], [Tredgold 1957]: Obtained far lower energy N-representability condition [Coleman:1963]

$$
\begin{gathered}
\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right) \rightarrow \Psi(123 \cdots N) \\
\gamma\left(1 \mid 1^{\prime}\right) \rightarrow \Psi(123 \cdots N)
\end{gathered}
$$

N-representability condition

N-representability condition

- "Is this 2-RDM N-representable?" NP-hard [Deza Laurent 1997][Liu et al. 2007]

N-representability condition

- "Is this 2-RDM N-representable?" NP-hard [Deza Laurent 1997][Liu et al. 2007]
- Approximation is important

N-representability condition

- "Is this 2-RDM N-representable?" NP-hard [Deza Laurent 1997][Liu et al. 2007]
- Approximation is important
- P, Q-condition [Coleman 1963]

N-representability condition

- "Is this 2-RDM N-representable?" NP-hard [Deza Laurent 1997][Liu et al. 2007]
- Approximation is important
- P, Q-condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod et al. 1964]

N-representability condition

- "Is this 2-RDM N-representable?" NP-hard [Deza Laurent 1997][Liu et al. 2007]
- Approximation is important
- $\boldsymbol{P}, \boldsymbol{Q}$-condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod et al. 1964]
- T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]

N-representability condition

- "Is this 2-RDM N-representable?" NP-hard [Deza Laurent 1997][Liu et al. 2007]
- Approximation is important
- $\boldsymbol{P}, \boldsymbol{Q}$-condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod et al. 1964]
- T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]
- Very good for atoms and molecules [Garrod et al 1975, 1976] [Nakata et al. 2001, 2002], [Zhao et al. 2004], [Mazziotti 2004]

N-representability condition

- "Is this 2-RDM N-representable?" NP-hard [Deza Laurent 1997][Liu et al. 2007]
- Approximation is important
- $\boldsymbol{P}, \boldsymbol{Q}$-condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod et al. 1964]
- T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]
- Very good for atoms and molecules [Garrod et al 1975, 1976] [Nakata et al. 2001, 2002], [Zhao et al. 2004], [Mazziotti 2004]
- Known "good" approximations are usually semidifinite relaxation.

Semidefinite relaxation to the N-representability condition

Semidefinite relaxation to the N-representability condition

Well known N-representability conditions are usually non-negativity of 2-RDM and linearly transformed 2-RDM.

$$
\begin{gathered}
\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right) \geq 0 \\
-\Gamma\left(11^{\prime} \mid 22^{\prime}\right)+\delta\left(2-1^{\prime}\right) \gamma\left(1 \mid 2^{\prime}\right) \geq 0
\end{gathered}
$$

etc.

Semidefinite relaxation to the N-representability condition

Well known N-representability conditions are usually non-negativity of 2-RDM and linearly transformed 2-RDM.

$$
\begin{gathered}
\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right) \geq 0 \\
-\Gamma\left(11^{\prime} \mid 22^{\prime}\right)+\delta\left(2-\mathbf{1}^{\prime}\right) \gamma\left(1 \mid 2^{\prime}\right) \geq 0
\end{gathered}
$$

etc.

Semidefinite programming. [Nakata et al 2001, 2002]

Results for atoms and molecules

[Nakata, Braams, Fujisawa, Fukuda, Percus, Yamashita, Zhao, J. Chem. Phys. 2008] The ground state energies of atoms and molecules by various methods.

System	State			$\Delta \mathrm{E}_{\text {CCSD }}(T)$,	
C	${ }^{3} \mathrm{P}$	620	-0.0001	+0.00016	+0.05202	-37.73653
0	${ }^{1}$ D	820	-0.0012	-0.0027	+0.10878	-74.78733
Ne	${ }^{1} S$	1020	-0.0001	-0.0000	+0.1	128.63881
O^{+}	${ }^{2} \Pi_{g}$	1520	-0.0020	+0.00325	+0.17074	148.79339
BH	${ }^{1} \Sigma^{+}$	624	-0.0001	+0.00030	+0.07398	-25.18766
CH	${ }^{2} \Pi_{r}$	724	-0.0003	+0.00031	+0.07895	-38.33735
NH	${ }^{1} \Delta$	824	-0.0004	+0.00437	+0.11495	-54.96440
HF	${ }^{1} \Sigma^{+}$	1424	-0.0003	+0.00032	+0.13834	-100.16031
	${ }^{1}$ S	1026	-0.0003	+0.00067	+0.15427	-99.59712
$\mathrm{H}_{2} \mathrm{O}$	${ }^{1} A_{1}$	1028	-0.000	+0.0005	0.14645	-76

GT1T2 : the RDM method with $P, Q, G, T 1, T 2^{\prime}$ condition
$\operatorname{CCSD}(\mathrm{T})$: Coupled cluster singles and doubles with perturbational treatment of triples
HF : Hartree-Fock (mean field approximation)
$\mathrm{FCl} \quad: \quad$ FullCl(the exact value with given basis)

How large SDPS are they?

Number of constraints, blocks (stnadard dual type SDP)

\boldsymbol{r}	\# of constraints	blocks
24	15018	$2520 \times 2,792 \times 4,288 \times 1,220 \times 2$
26	20709	$3211 \times 2,1014 \times 4,338 \times 1,286 \times 2$

Timing using Itanium $2(1.3 \mathrm{GHz})$ four processors per node.
System, State, Basis $\quad \boldsymbol{r}$ Solver Time Proc.
$\mathbf{S i H}_{4},{ }^{1} \boldsymbol{A}_{1}$, STO-6G 26 SDPARA 5.1 days 16
$\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, double- $\zeta 28$ SDPARA 2.2 hours 8
$\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, double- $\zeta 28$ SDPARA 20 days 8
$\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, double- $\zeta 28$ SDPARA 24 days 8

Ultra highly accurate SDP solver

At the strong correlation $\operatorname{limit}(|\boldsymbol{U} / t| \rightarrow \infty)$, the ground state of the Hubbard model becomes degenerated, thus we need multiple arithmetic version of SDP solver (SDPA-GMP)

The ground state energies of 1D Hubbard model
PBC, Sites:4, Electrons: 4, Spin: 0

U/t	SDPA (double)	SDPA-GMP (PQG)	fullCl
10000.0	0	-1.1999998800000251 $\times 10^{-3}$	-1.1999998880 $\times 10^{-3}$
1000.0	-1.2×10^{-2}	$-1.1999880002507934 \times 10^{-2}$	$-1.1999880002 \times 10^{-2}$
100.0	-1.1991×10^{-1}	-1.1988025013717993 $\times 10^{-1}$	-1.19880248946 $\times 10^{-1}$
10.0	-1.1000	-1.0999400441222934	-1.099877772750
1.0	-3.3417	-3.3416748070259956	-3.340847617248
PBC, Sites:6, Electrons: 6, Spin: 0			
U/t	SDPA (double)	SDPA-GMP (PQGT1T2)	fullCl
10000.0	0	-1.7249951195749525 $\times 10^{-3}$	-1.721110121 $\times 10^{-3}$
1000.0	-1×10^{-2}	$-1.7255360310431304 \times 10^{-2}$	$-1.7211034713 \times 10^{-2}$
100.0	-1.730×10^{-1}	$-1.7302157140594339 \times 10^{-1}$	$-1.72043338097 \times 10^{-1}$
10.0	-1.6954	-1.6953843276854447	-1.664362733287
1.0	-6.6012	-6.6012042217806286	-6.601158293375

Current problems

- Usually the size of problems becomes extremly large in SDP.
- Moreover, still we cannot solve midium sized molecules with the RDM method where the traditional methods can solve in seconds; too large SDP!
- Chemist intersted in large/huge systems like protein, DNA...

Summary

- The RDM method is a promising candidate to a simpler and exact method of chemistry.
- N-representability condition is the major obstacle, and can be cast as semidefinite programming.
- Semidefintite relaxation works very nicely; almost comparable to the exact results.
- Development and application of SDPA-GMP (multiple pricision arithmetic version of SDP solver) for degenerated systems.
- Future direction: development of SDP for quantum chemistry.

