The Reduced Density Matrix Method: Application Of $T 2^{\prime} N$-representability Condition and Development of Highly Accurate Solver

Maho Nakata ${ }^{\dagger}$, Bastiaan J. Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita, Zhengji Zhao maho@riken.jp
${ }^{\dagger}$ RIKEN ACCC, Emory Univ., Chuo Univ., Tokyo Tech Institute, New York Univ., Lawrence Berlekey National Lab.

Overview

- Motivation
- Introduction of the RDM method
- Recent results
- Summary and future direction

Motivation:theoretical chemistry

Motivation:theoretical chemistry

Goals: prediction and design of chemical reaction

- What happens if we mix substance A and B ?
- CO_{2} conversion.
- Drug design.
etc...

Basic equation: Schrödinger equation

Basic equation: Schrödinger equation

(electronic) Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Basic equation: Schrödinger equation

(electronic) Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Schrödinger equation

Basic equation: Schrödinger equation

(electronic) Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Schrödinger equation

$$
H \Psi(1,2, \cdots N)=E \Psi(1,2, \cdots N)
$$

Basic equation: Schrödinger equation

 (electronic) Hamiltonian $\boldsymbol{H}$$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\frac{Z e^{2}}{4 \pi \epsilon_{0} r_{j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Schrödinger equation

$$
H \Psi(1,2, \cdots N)=E \Psi(1,2, \cdots N)
$$

Pauli principle: antisymmetric wavefunctionis

$$
\Psi(\cdots, i, \cdots, j, \cdots)=-\Psi(\cdots, j, \cdots, i, \cdots)
$$

Solving Schrödinger equation is difficult

We know the basic equation but...

Solving Schrödinger equation is difficult

We know the basic equation but...

[Dirac 1929] "Quantum Mechanics of Many-Electron Systems."

Simpler quantum mechanical method

Simpler quantum mechanical method

A success story: The Density Functional Theory:
[Hoheberg-Kohn 1964] [Kohn-Sham 1965]

Ground state electronic density $\rho(\boldsymbol{r})$

\Downarrow

external potential $\boldsymbol{v}(\boldsymbol{r})$
\Downarrow
Hamiltonian \boldsymbol{H}
\Downarrow
Schrödinger equation
Very difficult functional $\boldsymbol{F}[\rho(\boldsymbol{r})]$. Practically this is semi-empirical theory.

Preferable methods for chemistry

Preferable methods for chemistry

- From the first principle.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.
- Language: better understanding of chemistry and physics.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.
- Language: better understanding of chemistry and physics.
- Low scaling cost.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.
- Language: better understanding of chemistry and physics.
- Low scaling cost.
The RDM method!

The RDM method

The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$

The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)=\binom{N}{2} \int \boldsymbol{\Psi}^{*}(\mathbf{1 2 3} \cdots N) \Psi\left(\mathbf{1}^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$
Can we construct simpler quantum chemical method using $\Gamma\left(\mathbf{1 2 |} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$ as a basic variable?

The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$
Can we construct simpler quantum chemical method using $\Gamma\left(\mathbf{1 2 |} \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$ as a basic variable?

Scaling

Method \# of variable (discritized) Exact?
 Ψ
 $\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)$
 $N,(r!)$
 4, $\left(r^{4}\right)$
 Yes
 Yes

Scaling

Method \# of variable (discritized) Exact?
 Ψ
 $\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)$
 $N,(r!)$
 4, $\left(r^{4}\right)$
 Yes
 Yes

Good scaling

Scaling

Method \# of variable (discritized) Exact?
 Ψ
 $\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)$
 $N,(r!)$
 4, $\left(r^{4}\right)$
 Yes
 Yes

Good scaling
Equivalent to Schrödinger eq.

The RDM method

The RDM method

The Hamiltonian contains only 1 and 2-particle interaction.

$$
H=\sum_{i j} v_{j}^{i} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}
$$

The RDM method

The Hamiltonian contains only 1 and 2-particle interaction.

$$
H=\sum_{i j} v_{j}^{i} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}
$$

The total energy \boldsymbol{E} becomes,

$$
\begin{aligned}
E & =\sum_{i j} v_{j}^{i}\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle+\frac{\mathbf{1}}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle \\
& =\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}} .
\end{aligned}
$$

The RDM method

The RDM method

Here we defined the second-order reduced density matrix $\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}$ (2-RDM)

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle,
$$

The RDM method

Here we defined the second-order reduced density matrix $\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}$ (2-RDM)

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle,
$$

and the first-order reduced density matrix γ_{j}^{i} (1-RDM)

$$
\gamma_{j}^{i}=\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle
$$

The ground state/ N-representability condition

The ground state/ N-representability condition

The ground state energy and 2-RDM can be obtained....[Rosina 1968]

The ground state/ N-representability condition

The ground state energy and 2-RDM can be obtained....[Rosina 1968]

$$
\begin{aligned}
E_{g} & =\min _{\Psi}\langle\Psi| H|\Psi\rangle \\
& =\min _{\gamma, \Gamma}\left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{i} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \boldsymbol{j}_{j_{1} j_{2}}^{i_{i} i_{2}}\right\}
\end{aligned}
$$

The ground state/ N-representability condition

The ground state energy and 2-RDM can be obtained....[Rosina 1968]

$$
\begin{aligned}
E_{g} & =\min _{\Psi}\langle\Psi| H|\Psi\rangle \\
& =\min _{\gamma, \Gamma}\left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{i} i_{j} j_{j},} w_{j_{2} j_{2}}^{i_{1} i_{2}} \boldsymbol{\Gamma}_{j_{1} j_{2}}^{i_{i} i_{2}}\right\}
\end{aligned}
$$

[Mayers 1955], [Tredgold 1957]: Lower than the exact one

The ground state/ N-representability condition

The ground state energy and 2-RDM can be obtained....[Rosina 1968]

$$
\begin{aligned}
E_{g} & =\min _{\Psi}\langle\Psi| H|\Psi\rangle \\
& =\min _{\gamma, \Gamma}\left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}\right\}
\end{aligned}
$$

[Mayers 1955], [Tredgold 1957]: Lower than the exact one N-representability condition [Coleman 1963]

$$
\begin{gathered}
\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right) \rightarrow \Psi(123 \cdots N) \\
\gamma\left(1 \mid 1^{\prime}\right) \rightarrow \Psi(123 \cdots N)
\end{gathered}
$$

N-representability condition

N-representability condition

"Is a given 2-RDM N-representable?"

N-representability condition

- "Is a given 2-RDM N-representable?" QMA-complete

N-representability condition

- "Is a given 2-RDM N-representable?" QMA-complete \Rightarrow NP-hard [Deza 1997] [Liu et al. 2007]

N-representability condition

- "Is a given 2 -RDM N-representable?" QMA-complete \Rightarrow NP-hard [Deza 1997] [Liu et al. 2007]
- Approximation is essential

N-representability condition

- "Is a given 2-RDM N-representable?" QMA-complete \Rightarrow NP-hard [Deza 1997] [Liu et al. 2007]
- Approximation is essential
- $\boldsymbol{P}, \boldsymbol{Q}$-condition [Coleman 1963]

N-representability condition

- "Is a given 2-RDM N-representable?" QMA-complete \Rightarrow NP-hard [Deza 1997] [Liu et al. 2007]
- Approximation is essential
- $\boldsymbol{P}, \boldsymbol{Q}$-condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod et al. 1964]

N-representability condition

- "Is a given 2 -RDM N-representable?" QMA-complete \Rightarrow NP-hard [Deza 1997] [Liu et al. 2007]
- Approximation is essential
- $\boldsymbol{P}, \boldsymbol{Q}$-condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod et al. 1964]
- T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]

N-representability condition

- "Is a given 2-RDM N-representable?" QMA-complete \Rightarrow NP-hard [Deza 1997] [Liu et al. 2007]
- Approximation is essential
- $\boldsymbol{P}, \boldsymbol{Q}$-condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod et al. 1964]
- T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]
- Quite good for atoms and molecules [Garrod et al 1975, 1976], [Nakata et al. 2001, 2002], [Zhao et al. 2004] [Mazziotti 2004]

N-representability condition

N-representability condition

$\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T 1}, \boldsymbol{T 2}$-matrix are all positive semidefinite \leftrightarrow eigenvalues λ_{i} are non-negative ($\lambda_{i} \geq \mathbf{0}$)。

$$
\boldsymbol{U}^{\dagger} \boldsymbol{\Gamma} \boldsymbol{U}=\left[\begin{array}{cccc}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
\mathbf{0} & & & \lambda_{n}
\end{array}\right] \geq \mathbf{0}
$$

First application to Be atom
[Garrod et al 1975, 1976]
Calculation methods are not very well studied...

Realization of the RDM method

Realization of the RDM method

$\boldsymbol{E}_{\mathbf{g}}=\underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} \boldsymbol{H} \boldsymbol{\Gamma}$
$\mathcal{P}=\{\boldsymbol{\Gamma}:$ Approx. N-rep.condition $\}$

Realization of the RDM method

$\boldsymbol{E}_{\mathbf{g}}=\underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} \boldsymbol{H} \boldsymbol{\Gamma}$
$\mathcal{P}=\{\boldsymbol{\Gamma}:$ Approx. N-rep.condition $\}$
[Nakata et al. 2001]
Semidifinite programming
We solved exactly for the first time!

How restrictive? How we optimzie 2-RDM?

How restrictive? How we optimzie 2-RDM?

- Are N-representability physically good?

How restrictive? How we optimzie 2-RDM?

- Are N-representability physically good?

Typical results (+ [Zhao et al. 2004] [Nakata et al. 2002])
N-rep. Correlation energy(\%) dissociation limit

PQG	$\mathbf{1 0 0} \boldsymbol{\sim} \mathbf{1 2 0 \%}$
PQGT1T2	$\mathbf{1 0 0} \boldsymbol{\sim 1 0 1 \%}$
CCSD(T)	$\mathbf{1 0 0 \sim \mathbf { 1 0 1 \% }}$

How restrictive? How we optimzie 2-RDM?

- Are N-representability physically good?

Typical results (+ [Zhao et al. 2004] [Nakata et al. 2002])
N-rep. Correlation energy(\%) dissociation limit

PQG	$\mathbf{1 0 0} \boldsymbol{\sim} \mathbf{1 2 0 \%}$
PQGT1T2	$\mathbf{1 0 0} \boldsymbol{\sim 1 0 1 \%}$
CCSD(T)	$\mathbf{1 0 0 \sim \mathbf { 1 0 1 \% }}$
	Yes they are!

- How we optimzie 2-RDM? (Numerical issue)

How restrictive? How we optimzie 2-RDM?

- Are N-representability physically good?

Typical results (+ [Zhao et al. 2004] [Nakata et al. 2002])
N-rep. Correlation energy(\%) dissociation limit

PQG	$\mathbf{1 0 0} \boldsymbol{\sim} \mathbf{1 2 0 \%}$
PQGT1T2	$\mathbf{1 0 0} \boldsymbol{\sim 1 0 1 \%}$
CCSD(T)	$\mathbf{1 0 0} \boldsymbol{\sim} \mathbf{1 0 1 \%}$

- How we optimzie 2-RDM? (Numerical issue)

Details were given in Contributed Talks 13 by Mituhiro Fukuda et al., "Exploiting the semidefinite formulation on the variational calculation of second-order reduced density matrix of atoms and molecules."

Application to potential energy curve

- Dissociation curve of \mathbf{N}_{2} (triple bond) [Nakata et al. 2002].

Recent results

J. Chem. Phys 128, 164113 (2008), "Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver",
Maho Nakata, Bastiaan J. Braams, Katsuki Fujisawa, Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita and Zhengji Zhao

Recent results

- Application of recently derived new $\boldsymbol{T 2} \boldsymbol{N}$-rep. condition [Braams et al. 2007], [Mazziotti 2006] $\boldsymbol{T 2}^{\prime} \rightarrow(A+B)^{\dagger}(A+B)+A A^{\dagger}$
- The largest system: double- $\zeta \mathbf{H}_{2} \mathbf{O}$ molecule.
- Development of Multiple precision arithmetic version of SDP solver and application to one dimentional Hubbard model of strong correlation limit $|\boldsymbol{U} / \boldsymbol{t}| \rightarrow \infty$.

The ground state energy of atoms and molecules

System	Pr		$\Delta \mathrm{E}_{\text {GT1T2 }}$	$\Delta \mathrm{E}_{\text {GT1T2' }}$	$\Delta \mathrm{E}_{\text {CCSD }}(\boldsymbol{T})$	$\Delta \mathrm{E}_{\boldsymbol{H} F}$	$\mathrm{E}_{\text {FCI }}$
C	${ }^{3} \boldsymbol{P}$	620	-0.0004	-0.0001	+0.00016	+0.05202	3653
0	${ }^{1} D$	820	-0.0013	-0.0012	+0.00279	+0.10878	-74.78733
Ne	${ }^{1} S$	1020	-0.0002	-0.0001	-0.00005	+0.11645	-128.63881
O^{+}	${ }^{2} \Pi_{g}$	1520	-0.0022	-0.0020	+0.00325	+0.17074	-148.79339
BH	${ }^{1} \Sigma^{+}$	624	-0.0001	-0.0001	+0.00030	+0.07398	-25.18766
CH	${ }^{2} \Pi_{r}$	724	-0.0008	-0.0003	+0.00031	+0.07895	-38.33735
NH	${ }^{1} \Delta$	824	-0.0005	-0.0004	+0.00437	+0.11495	-54.96440
HF	${ }^{1} \Sigma^{+}$	1424	-0.0003	-0.0003	+0.00032	+0.13834	-100.16031
SiH_{4}	${ }^{1} A_{1}$	1826	-0.0002	-0.0002	+0.00018	+0.07311	-290.28490
F^{-}	${ }^{1} S$	1026	-0.0003	-0.0003	+0.00067	+0.15427	-99.59712
P	${ }^{4} S$	1526	-0.0001	-0.0000	+0.00003	+0.01908	-340.70802
$\mathrm{H}_{2} \mathrm{O}$	${ }^{1} A_{1}$	1028	-0.0004	-0.0004	+0.00055	+0.14645	-76.15576

$\boldsymbol{G T 1 T 2}$: \quad The RDM method ($\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T} \mathbf{1}$ and $\boldsymbol{T} \mathbf{2}$ conditions)
GT1T2' : The RDM method ($P, Q, G, T 1$ and $T 2^{\prime}$ conditions)
$\operatorname{CCSD}(\mathrm{T})$: Coupled cluster singles and doubles with perturbational treatment of triples
HF : Hartree-Fock
FCI FullCI

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
\Rightarrow necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP).

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
\Rightarrow necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP).
- double (16 digits)
$\mathbf{1 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
\Rightarrow necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP).
- double (16 digits) $1+0.00000000000000001 \simeq 1$
- GMP (60 digits; can be arbitrary)
$1+0.0001 \simeq 1$

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
\Rightarrow necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP).
- double (16 digits) $1+0.00000000000000001 \simeq 1$
- GMP (60 digits; can be arbitrary)
$1+0.0001 \simeq 1$

SDPA-GMP and Hubbard model

The 1D Hubbard model with high correlation limit $|\boldsymbol{U} / \boldsymbol{t}| \rightarrow \infty$: All states are almost degenerated.

The ground state energies of 1D Hubbard model
PBC, \# of sites:4, \# of electrons: 4 , spin 0

U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCl
10000.0	0	-1.1999998800000251 $\times 10^{-3}$	-1.1999998880 $\times 10^{-3}$
1000.0	-1.2×10^{-2}	$-1.1999880002507934 \times 10^{-2}$	$-1.1999880002 \times 10^{-2}$
100.0	-1.1991×10^{-1}	$-1.1988025013717993 \times 10^{-1}$	$-1.19880248946 \times 10^{-1}$
10.0	-1.1000	-1.0999400441222934	-1.099877772750
1.0	-3.3417	-3.3416748070259956	-3.340847617248
PBC, \# of sites:6, \# of electrons: 6, spin 0			
U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCl
10000.0	0	$\mathbf{- 1 . 7 2 4 9 9 5 1 1 9 5 7 4 9 5 2 5} \times 10^{-3}$	-1.721110121 $\times 10^{\mathbf{- 3}}$
1000.0	-1×10^{-2}	$-1.7255360310431304 \times 10^{-2}$	$-1.7211034713 \times 10^{-2}$
100.0	-1.730×10^{-1}	$-1.7302157140594339 \times 10^{-1}$	-1.72043338097 $\times 10^{-1}$
10.0	-1.6954	-1.6953843276854447	-1.664362733287
1.0	-6.6012	-6.6012042217806286	-6.601158293375

How large these SDP are?

\# of constraints

24	15018	$2520 \times 2,792 \times 4,288 \times 1,220 \times 2$
26	20709	$3211 \times 2,1014 \times 4,338 \times 1,286 \times 2$

Elapsed time using Itanium 2 (1.3GHz) 1 node 4 processors.
System, State, Basis N-rep. $\quad \boldsymbol{r} \quad$ Time \quad \# of nodes
$\mathbf{S i H}_{4},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, STO-6G PQGT1T2 $26 \quad 5.1$ days 16
$\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{\mathbf{1}} \boldsymbol{A}_{\mathbf{1}}$, double- $\zeta \quad$ PQG $28 \quad 2.2$ hours 8
$\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} A_{1}$, double- $\zeta \quad$ PQGT1T2 $28 \quad 20$ days $\quad 8$
$\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{\mathbf{1}} \boldsymbol{A}_{\mathbf{1}}$, double- $\zeta \quad$ PQGT1T2' $28 \quad 24$ days 8

Summary and future direction

- Introduction of the RDM method.
- Semidefinite Programming
- Calculation with PQGT1T2': comparable to CCSD(T)
- Improvement are typically 0.1mHartree ~ 0.6mHartree by replacing from PQGT1T2 to PQGT1T2'.
- Development of very accurate SDP solver using multiple precision arithmetic.
- Applied to high correlation limit of Hubbard models with very good results.

Summary and future direction

- Introduction of the RDM method.
- Semidefinite Programming
- Calculation with PQGT1T2': comparable to CCSD(T)
- Improvement are typically 0.1mHartree ~ 0.6mHartree by replacing from PQGT1T2 to PQGT1T2'.
- Development of very accurate SDP solver using multiple precision arithmetic.
- Applied to high correlation limit of Hubbard models with very good results.
WIP : Developing a SDP solver suitable for quantum chemistry.

