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Motivation:theoretical chemistry

Goals: prediction and design of chemical reaction

o What happens if we mix substance A and B?
o CO, conversion.
o Drug design.

etc...
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Basic equation: Schrodinger equation
(electronic) Hamiltonian H

N
K2 7 > 2
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2m, 7 Arner; drepr;j

i>j

Schrédinger equation
HY(1,2,---N) = E¥Y(1,2,---N)

Pauli principle: antisymmetric wavefunctionis
W(eoo yiyeenyfoere) = =W(oe,foere yiyesr)
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Solving Schrodinger equation is difficult

We know the basic equation but...

The general theory of quantum
mechanics is now almost com-
plete. ... the whole of chemistry
are thus completely known, and
the difficultly is only that the exact
application of these laws leads to
equations much too complected
to be soluble.

[Dirac 1929] “Quantum Mechanics of Many-Electron Systems.”
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Simpler quantum mechanical method
A success story: The Density Functional Theory:
[Hoheberg-Kohn 1964] [Kohn-Sham 1965]

Ground state electronic density p(r)

J

external potential v(r)

U

Hamiltonian H

4

Schradinger equation

Very difficult functional F[p(r)]. Practically this is
semi-empirical theory.
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The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Léwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]

T2(1'2) = (1;7 ) f P (123 -+ N)P(1'2'3 - - N)dps..y

Can we construct simpler quantum chemical
method using I'(12[1’2’) as a basic variable?

Yes
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Scaling

Method # of variable (discritized) Exact?

¥ N, (r!) Yes
I'(12[172%) 4, (r*) Yes
Good scaling

Equivalent to Schrédinger eq.
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The RDM method

The Hamiltonian contains only 1 and 2-particle
interaction.

_ lllz

H = Zv a.aj+ Z w..a llalzahaj1
1112]1]2

The total energy E becomes,

E = Zv (Pla’ a1 + > Z Wi (¥la! a aj,a;,|¥)

lll2]1]2

— E vl,yt+ E wlllz 151%)
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Here we defined the second-order reduced density
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The RDM method

Here we defined the second-order reduced density
matrix I‘“’2 (2-RDM)

Fj_‘lljz = (‘I’Ia a; ahahl‘l’),
and the first-order reduced density matrix y;
(1-RDM) .
Y = (¥laa;|¥).
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The ground state/N-representability

condition
The ground state energy and 2-RDM can be
obtained....[Rosina 1968]

E, = m‘lgn(‘I’lHl‘I’)
— mln th,yt + Z i1iy lllz
1112 1112
i1i2j1j2

[Mayers 1955], [Tredgold 1957]: Lower than the exact one
N-representability condition [Coleman 1963]

T(12]1'2") - ¥(123---N)
y(1|1") = ¥(123---N)
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N-representability condition

e “Is a given 2-RDM N-representable?”
QMA-complete =NP-hard [Deza 1997] [Liu et
al. 2007]

o Approximation is essential

e P, Q-condition [Coleman 1963]
e G-condition [Garrod et al. 1964]
e T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]
e Quite good for atoms and molecules [Garrod et al

1975, 1976], [Nakata et al. 2001, 2002], [Zhao et
al. 2004] [Mazziotti 2004]
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N-representability condition

P,Q,G,T1,T2-matrix are all positive semidefinite &
eigenvalues A; are non-negative (4; = 0)

A 0
U'TU = i >0
0 A

First application to Be atom
[Garrod et al 1975, 1976]
Calculation methods are not very well studied...
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Realization of the RDM method

E, = Min TrHT
& I'epP
P ={I' : Approx. N-rep.condition}

[Nakata et al. 2001]
Semidifinite programming

We solved exactly for the first time!
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How restrictive? How we optimzie 2-RDM?
» Are N-representability physically good?

Typical results (+ [Zhao et al. 2004] [Nakata et al. 2002])

N-rep.  Correlation energy(%) dissociation limit

POG 100 ~ 120% yes
POGTIT2 100 ~ 101% yes
CCSD(T) 100 ~ 101% no

Yes they arel]

o How we optimzie 2-RDM? (Numerical issue)
Details were given in Contributed Talks 13 by
Mituhiro Fukuda et al.,“Exploiting the semidefinite
formulation on the variational calculation of second-order
reduced density matrix of atoms and molecules.”



Application to potential energy curve

» Dissociation curve of N (triple bond) [Nakata
et al. 2002].

Potential curve for N2 (STO-6G)
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Recent resulis

J. Chem. Phys 128, 164113 (2008),
“Variational calculation of second-order reduced
density matrices by strong N-representability
conditions and an accurate semidefinite
programming solver”,

Maho Nakata, Bastiaan J. Braams, Katsuki Fujisawa,
Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita and
Zhengji Zhao



Recent resulis

o Application of recently derived new T2’ N-rep.
condition [Braams et al. 2007], [Mazziotti
2006] 72" —» (A + B)'(A + B) + AAT

o The largest system: double-{ H,O molecule.

o Development of Multiple precision arithmetic
version of SDP solver and application to one
dimentional Hubbard model of strong
correlation limit [U/t] = oo.



The ground state energy of atoms and molecules

System State N r AEgria | AEgriry | A ECCSD(T) A Epr Ercr
C 3p 6 20 || —0.0004 | —0.0001 | +0.00016 +0.05202 -—37.73653
O D 8 20 || —0.0013 | —0.0012 | +0.00279 +0.10878 —74.78733

Ne 1§ 1020 || —0.0002 | —0.0001 | —0.00005 +0.11645 —128.63881
O;’ I, 1520 || —0.0022 | —-0.0020 | +0.00325 +0.17074 —148.79339
BH I¥+ 624 || —0.0001 | —0.0001 | +0.00030 +0.07398 —25.18766
CH I, 724 | -0.0008 | —0.0003 | +0.00031 +0.07895 -38.33735
NH IA 8 24 || —0.0005 | —0.0004 | +0.00437 +0.11495 —54.96440
HF I+ 14 24 || —0.0003 | —0.0003 | +0.00032 +0.13834 —100.16031
SiHy '4; 18 26 || —0.0002 | —-0.0002 | +0.00018 +0.07311 —290.28490
F- 1S 1026 || —0.0003 | —0.0003 | +0.00067 +0.15427 —99.59712
P 4§ 1526 || —0.0001 | —0.0000 | +0.00003 +0.01908 —340.70802
H,O 'A; 1028 || —0.0004 | —0.0004 | +0.00055 +0.14645 -76.15576

GT1T2 : The RDM method (P, Q, G, T1 and T2 conditions)

GT1T2 : The RDM method (P, Q, G, T1 and T2’ conditions)

CCSD(T) : Coupled cluster singles and doubles with perturbational treatment of triples
HF : Hartree-Fock

FCI : FullCl
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SDPA-GMP and Hubbard model

The 1D Hubbard model with high correlation limit
|U/t| - oo: All states are almost degenerated.

The ground state energies of 1D Hubbard model
PBC, # of sites:4, # of electrons: 4, spin 0

Uit SDPA (16 digits) SDPA-GMP (60 digits) fullCl
10000.0 0 —1.1999998800000251 x 10~3 -1.199999880 x 10~3
1000.0 -1.2x 1072 —1.1999880002507934 x 1072 —1.1999880002 x 10~2
100.0 -1.1991 x 10°!  —1.1988025013717993 x 10~1  —1.19880248946 x 107!
10.0 -1.1000 —1.0999400441222934 -1.099877772750
1.0 -3.3417 —3.3416748070259956 —3.340847617248
PBC, # of sites:6, # of electrons: 6, spin 0
Ut SDPA (16 digits) SDPA-GMP (60 digits) fullCl
10000.0 0 —1.7249951195749525 x 1073 —-1.721110121 x 1073
1000.0 -1x 1072 —1.7255360310431304 x 1072 —1.7211034713 x 1072
100.0 -1.730 x 10! —1.7302157140594339 x 10~1  —1.72043338097 x 10~!
10.0 -1.6954 —1.6953843276854447 —-1.664362733287
1.0 —-6.6012 —6.6012042217806286 —6.601158293375




How large these SDP are?

# of constraints

r constraints block

24 15018 2520x2, 792x4, 288x1,220x2
26 20709 3211x2, 1014x4, 338x1, 286x2

Elapsed time using Itanium 2 (1.3GHz) 1 node 4 processors.

System, State, Basis N-rep. r Time # of nodes
SiH,, 'A,, STO-6G  PQGT1T2 26 5.1 days 16
H,0, 'A,, double-¢ POG 28 2.2 hours 8
H,0, 'A;, double-{ PQGT1T2 28 20 days 8

H,0, 'A,, double-y PQGTIT2 28 24 days 8




Summary and future direction

Introduction of the RDM method.
Semidefinite Programming

Calculation with PQGT1T?2’: comparable to
CCSD(T)

Improvement are typically 0.1mHartree ~
0.6mHartree by replacing from PQGT1T?2 to
POGT1TY'.

Development of very accurate SDP solver
using multiple precision arithmetic.

Applied to high correlation limit of Hubbard
models with very good results.
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Summary and future direction

Introduction of the RDM method.
Semidefinite Programming

Calculation with PQGT1T?2’: comparable to
CCSD(T)

Improvement are typically 0.1mHartree ~
0.6mHartree by replacing from PQGT1T?2 to
POGT1TY'.

Development of very accurate SDP solver
using multiple precision arithmetic.

Applied to high correlation limit of Hubbard
models with very good results.

: Developing a SDP solver suitable for
quantum chemistry.



