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Overview

• Motivation
• Introduction of the RDM method
• Recent results
• Summary and future direction



Motivation:theoretical chemistry

Goals: prediction and design of chemical reaction

• What happens if we mix substance A and B?
• CO2 conversion.
• Drug design.
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Basic equation: Schrödinger equation

(electronic) Hamiltonian H
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Schrödinger equation

HΨ(1, 2, · · · N) = EΨ(1, 2, · · · N)

Pauli principle: antisymmetric wavefunctionis
Ψ(· · · , i, · · · , j, · · · ) = −Ψ(· · · , j, · · · , i, · · · )
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Solving Schrödinger equation is difficult

We know the basic equation but...

The general theory of quantum
mechanics is now almost com-
plete. · · · the whole of chemistry
are thus completely known, and
the difficultly is only that the exact
application of these laws leads to
equations much too complected
to be soluble.

[Dirac 1929] “Quantum Mechanics of Many-Electron Systems.”
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Simpler quantum mechanical method

A success story: The Density Functional Theory:
[Hoheberg-Kohn 1964] [Kohn-Sham 1965]

Ground state electronic density ρ(r)
⇓

external potential v(r)
⇓

Hamiltonian H
⇓

Schrödinger equation

Very difficult functional F[ρ(r)]. Practically this is
semi-empirical theory.
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Preferable methods for chemistry

• From the first principle.
• Separability or nearsightedness: split a whole

system into subsystems.
• Language: better understanding of chemistry

and physics.
• Low scaling cost.
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The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]

Γ(12|1′2′) =
(
N
2

) ∫
Ψ∗(123 · · · N)Ψ(1′2′3 · · · N)dµ3···N

Can we construct simpler quantum chemical
method using Γ(12|1′2′) as a basic variable?
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Scaling

Method # of variable (discritized) Exact?
Ψ N, (r!) Yes

Γ(12|1′2′) 4, (r4) Yes

Good scaling
Equivalent to Schrödinger eq.
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The RDM method

The Hamiltonian contains only 1 and 2-particle
interaction.
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The ground state/N-representability
condition

The ground state energy and 2-RDM can be
obtained....[Rosina 1968]
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[Mayers 1955], [Tredgold 1957]: Lower than the exact one
N-representability condition [Coleman 1963]

Γ(12|1′2′) → Ψ(123 · · · N)

γ(1|1′) → Ψ(123 · · · N)
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N-representability condition

• “Is a given 2-RDM N-representable?”
QMA-complete⇒NP-hard [Deza 1997] [Liu et
al. 2007]

• Approximation is essential
• P, Q-condition [Coleman 1963]

• G-condition [Garrod et al. 1964]
• T1, T2-condition [Zhao et al. 2004], [Erdahl 1978]
• Quite good for atoms and molecules [Garrod et al

1975, 1976], [Nakata et al. 2001, 2002], [Zhao et
al. 2004] [Mazziotti 2004]
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N-representability condition

P,Q,G,T1,T2-matrix are all positive semidefinite↔
eigenvalues λi are non-negative (λi ≥ 0)。

U†ΓU =


λ1 0
λ2
. . .

0 λn

 � 0

First application to Be atom
[Garrod et al 1975, 1976]

Calculation methods are not very well studied...



N-representability condition

P,Q,G,T1,T2-matrix are all positive semidefinite↔
eigenvalues λi are non-negative (λi ≥ 0)。

U†ΓU =


λ1 0
λ2
. . .

0 λn

 � 0

First application to Be atom
[Garrod et al 1975, 1976]

Calculation methods are not very well studied...



Realization of the RDM method

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata et al. 2001]

Semidifinite programming
We solved exactly for the first time!



Realization of the RDM method

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata et al. 2001]

Semidifinite programming
We solved exactly for the first time!



Realization of the RDM method

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata et al. 2001]

Semidifinite programming
We solved exactly for the first time!



How restrictive? How we optimzie 2-RDM?

• Are N-representability physically good?

Typical results (+ [Zhao et al. 2004] [Nakata et al. 2002])
N-rep. Correlation energy(%) dissociation limit
PQG 100 ∼ 120% yes

PQGT1T2 100 ∼ 101% yes
CCSD(T) 100 ∼ 101% no

§̈ ¥¦Yes they are!

• How we optimzie 2-RDM? (Numerical issue)
Details were given in Contributed Talks 13 by
Mituhiro Fukuda et al.,“Exploiting the semidefinite
formulation on the variational calculation of second-order
reduced density matrix of atoms and molecules.”
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Application to potential energy curve
• Dissociation curve of N2 (triple bond) [Nakata

et al. 2002].

-108.75

-108.7

-108.65

-108.6

-108.55

-108.5

 1  1.5  2  2.5  3

T
ot

al
 e

ne
rg

y(
at

om
ic

 u
ni

t)

distance(Angstrom)

Potential curve for N2 (STO-6G)
Hartree-Fock

PQG
FullCI
MP2

CCSD(T)



Recent results

J. Chem. Phys 128, 164113 (2008),
“Variational calculation of second-order reduced

density matrices by strong N-representability
conditions and an accurate semidefinite

programming solver”,
Maho Nakata, Bastiaan J. Braams, Katsuki Fujisawa,

Mituhiro Fukuda, Jerome K. Percus, Makoto Yamashita and
Zhengji Zhao



Recent results

• Application of recently derived new T2′ N-rep.
condition [Braams et al. 2007], [Mazziotti
2006] T2′ → (A + B)†(A + B) + AA†

• The largest system: double-ζ H2O molecule.
• Development of Multiple precision arithmetic

version of SDP solver and application to one
dimentional Hubbard model of strong
correlation limit |U/t| → ∞.



The ground state energy of atoms and molecules

System State N r ∆ EGT1T2 ∆ EGT1T2′ ∆ ECCSD(T) ∆ EHF EFCI
C 3 P 6 20 −0.0004 −0.0001 +0.00016 +0.05202 −37.73653
O 1 D 8 20 −0.0013 −0.0012 +0.00279 +0.10878 −74.78733
Ne 1S 10 20 −0.0002 −0.0001 −0.00005 +0.11645 −128.63881
O+

2
2Πg 15 20 −0.0022 −0.0020 +0.00325 +0.17074 −148.79339

BH 1Σ+ 6 24 −0.0001 −0.0001 +0.00030 +0.07398 −25.18766
CH 2Πr 7 24 −0.0008 −0.0003 +0.00031 +0.07895 −38.33735
NH 1∆ 8 24 −0.0005 −0.0004 +0.00437 +0.11495 −54.96440
HF 1Σ+ 14 24 −0.0003 −0.0003 +0.00032 +0.13834 −100.16031
SiH4

1 A1 18 26 −0.0002 −0.0002 +0.00018 +0.07311 −290.28490
F− 1S 10 26 −0.0003 −0.0003 +0.00067 +0.15427 −99.59712
P 4S 15 26 −0.0001 −0.0000 +0.00003 +0.01908 −340.70802
H2O 1 A1 10 28 −0.0004 −0.0004 +0.00055 +0.14645 −76.15576

GT1T2 : The RDM method (P,Q,G, T1 and T2 conditions)
GT1T2′ : The RDM method (P,Q,G, T1 and T2′ conditions)
CCSD(T) : Coupled cluster singles and doubles with perturbational treatment of triples
HF : Hartree-Fock
FCI : FullCI



Necessity of highly accurate solver
• SDP results are usually not accurate; typically

8 digits or so.
• When the ground state is degenerated, the

SDP becomes more difficult when
approaching to the exact optimal.

• WE NEED MORE DIGITS, FOR EXAMPLE
60 DIGITS!

⇒ necessity of highly accurate solver, using
multiple precision arithmetic (SDPA-GMP).
• double (16 digits)

1 + 0.00000000000000001 ' 1
• GMP (60 digits; can be arbitrary)

1 + 0.000000000000000000000000000000000000000000000000000000000001 ' 1

• GMP (GNU multiple precision
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SDPA-GMP and Hubbard model
The 1D Hubbard model with high correlation limit
|U/t| → ∞: All states are almost degenerated.

The ground state energies of 1D Hubbard model
PBC, # of sites:4, # of electrons: 4, spin 0

U/t SDPA (16 digits) SDPA-GMP (60 digits) fullCI
10000.0 0 −1.1999998800000251 × 10−3 −1.199999880 × 10−3

1000.0 −1.2 × 10−2 −1.1999880002507934 × 10−2 −1.1999880002 × 10−2

100.0 −1.1991 × 10−1 −1.1988025013717993 × 10−1 −1.19880248946 × 10−1

10.0 −1.1000 −1.0999400441222934 −1.099877772750
1.0 −3.3417 −3.3416748070259956 −3.340847617248

PBC, # of sites:6, # of electrons: 6, spin 0
U/t SDPA (16 digits) SDPA-GMP (60 digits) fullCI

10000.0 0 −1.7249951195749525 × 10−3 −1.721110121 × 10−3

1000.0 −1 × 10−2 −1.7255360310431304 × 10−2 −1.7211034713 × 10−2

100.0 −1.730 × 10−1 −1.7302157140594339 × 10−1 −1.72043338097 × 10−1

10.0 −1.6954 −1.6953843276854447 −1.664362733287
1.0 −6.6012 −6.6012042217806286 −6.601158293375



How large these SDP are?

# of constraints
r constraints block

24 15018 2520x2, 792x4, 288x1,220x2
26 20709 3211x2, 1014x4, 338x1, 286x2

Elapsed time using Itanium 2 (1.3GHz) 1 node 4 processors.
System, State, Basis N-rep. r Time # of nodes
SiH4, 1 A1, STO-6G PQGT1T2 26 5.1 days 16
H2O, 1 A1, double-ζ PQG 28 2.2 hours 8
H2O, 1 A1, double-ζ PQGT1T2 28 20 days 8
H2O, 1 A1, double-ζ PQGT1T2′ 28 24 days 8



Summary and future direction
• Introduction of the RDM method.
• Semidefinite Programming
• Calculation with PQGT1T2′: comparable to

CCSD(T)
• Improvement are typically 0.1mHartree ∼

0.6mHartree by replacing from PQGT1T2 to
PQGT1T2′.

• Development of very accurate SDP solver
using multiple precision arithmetic.

• Applied to high correlation limit of Hubbard
models with very good results.

WIP : Developing a SDP solver suitable for
quantum chemistry.
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