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Outline of the Talk

How to obtain a lower bound for the ground state energy of
fermionic systems by 2nd-order reduced density matrices?
Historical notes, N -representability conditions
Semidefinite Programming (SDP)
Primal SDP formulation and dual SDP formulation
Theoretical comparison on computational complexity with

RRSDP (Mazziotti)
Numerical Results

Today 4:15-4:45 Maho Nakata, “The Reduced Density Matrix Method:
Applications of T2′ N -representability Conditions and Development of Highly
Accurate Solver”
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Variational Calculation on 2nd-Order RDM

determine the ground-state (energy) of a fermionic system by a
variational calculation
variables are the Second-Order Reduced Density Matrices

(2-RDMs)
need to impose the so-called necessary N -representability

conditions
since the N -representability conditions are only necessary (and

not sufficient), we can only obtain a lower bound for the ground
state energy
it can be formulated mathematically as an

Semidefinite Programming Problem (SDP)
SDPs can be solved efficiently by Interior-Point Methods
provides an extremely good approximation, but there is a serious

limit on the size of the system in general orbital basis
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Incomplete List on the 2-RDM Computation

1940 Husimi 1955 Löwdin 1955 Mayer RDM
1960 Coulson 2-RDM
1963 Coleman N -representability conditions
1964 Garrod-Percus G condition
1960’s-1970’s Kijewski, Garrod-Mihailović-Rosina, Garrod-Fusco, Erdahl
1975 Mihailović-Rosina nucleon systems
2001 Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa (JCP 114 8282)
2002 Nakata-Ehara-Nakatsuji (JCP 116 5432) potential energy surface
2002 Mazziotti (PRA 65 062511)
2004 Zhao-Braams-Fukuda-Overton-Percus (JCP 120 2095) T1, T2

2004 Mazziotti (PRL 93 213001) RRSDP
2006 Cancès-Stoltz-Lewin (JCP 125 064101) dual
2007 Braams-Percus-Zhao (ACP vol. 134) T2′ condition
2006,2007 Mazziotti (PRA 74 32501, ACP vol. 134) T̄2 condition
2008 Nakata-Braams-Fujisawa-Fukuda-Percus-Yamashita-Zhao

(JCP 128 164113)
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1st- and 2nd-Order RDMs

variational calculation which involves only the 1-RDM

γi1
j1

= 〈Ψ|a†
i1

aj1 |Ψ〉

and the 2-RDM

Γi1i2
j1j2

=
1

2
〈Ψ|a†

i1
a†

i2
aj2aj1 |Ψ〉

we impose some conditions on the 1-RDM and 2-RDM in order to
be N -representable,
that is, there must exists an anti-symmetric wavefunction

Ψ(. . . , i, . . . , j, . . .) = −Ψ(. . . , j, . . . , i, . . .)

which results in the 1-RDM and 2-RDM above
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Known N -representability conditions

P : 2Γi1i2
j1j2

Coleman 1963
Q: (δi1

j1
δi2
j2
− δi1

j2
δi2
j1

) − (δi1
j1

γi2
j2

+ δi2
j2

γi1
j1

) + (δi1
j2

γi2
j1

+ δi2
j1

γi1
j2

) + 2Γi1i2
j1j2

Coleman 1963
G: δi2

j2
γi1

j1
− 2Γi1j2

j1i2
Garrod-Percus 1964

kth-order approximation: Erdahl-Jin 2000
T1: A[i1, i2, i3]A[j1, j2, j3]

(

1

6
δi1
j1

δi2
j2

δi3
j3
− 1

2
δi1
j1

δi2
j2

γi3
j3

+ 1

2
δi1
j1

Γi2i3
j2j3

)

Erdahl 1978, Zhao et al. 2004
T2: A[i2, i3]A[j2, j3]

(

1

2
δi2
j2

δi3
j3

γi1
j1

+ 1

2
δi1
j1

Γj2j3
i2i3

− 2δi2
j2

Γi1j3
j1i3

)

Erdahl 1978, Zhao et al. 2004

T2′:
(

T2 X

X† γ

)

where Xk
i1i2i3

= Γi1k
i2i3

Erdahl 1978,

Braams-Percus-Zhao 2007,
Mazziotti 2006,2007

A[i, j, k]f(i, j, k) = f(i, j, k) − f(i, k, j) − f(j, i, k) + f(j, k, i) + f(k, i, j) − f(k, j, i)

Kronecker’s delta δi
j
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N -representability Conditions (Open Problem)

complete set of N -representability conditions on the 1-RDM:

I � γ γ � 0

for the 2-RDM is an extremely difficult problem
The Diagonal Problem: determine all the N -representability

conditions for the diagonal elements of 2-RDM is NP-hard
cf. Deza-Laurent, Geometry of Cuts and Metrics, Springer-Verlag, 1997

the decision problem: If a given 2-RDM is N -representable is
Quantum Merlin-Arthur complete (QMA-complete) ⇒ NP-hard
cf. Y. Liu, M. Christandl, F. Verstraete, Phys. Rev. Lett. 98 110503 (2007)
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Variational Calculation by SDP

impose only the known N -representability conditions such as P ,
Q, G, T1, T2′ conditions and perform the variational calculation
on 1-RDM and 2-RDM
computes a lower bound for the ground state energy and an

approximate 1- and 2-RDMs

{

minimize tr(H1γ) + tr(H2Γ)

subject to P, Q, G, T1, T2′ conditions

⇒ Semidefinite Programming Problem
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Optimization and SDP

Optimization or Mathematical Programming

⇒ Develop efficient algorithms in theory and in practice to solve
optimization problems (generally involving finite dimensional
vectors, matrices or graphs)
Semidefinite Programming Problem (SDP)

Linear Matrix Inequality (LMI) in system and control theory
natural extension of Linear Programming (LP)
can be solved efficiently by Interior-Point Methods
powerful mathematical model which can efficiently

approximate problems which are essentially quadratic
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Semidefinite Program (SDP)

Primal











minimize
∑`

i=1
tr(CiXi)

subject to
∑`

i=1
tr(AipXi) = bp (1 ≤ p ≤ m)

Xi � O (1 ≤ i ≤ `)

Dual











maximize
∑m

p=1
bpyp

subject to
∑m

p=1
Aipyp + Si = Ci (1 ≤ i ≤ `)

Si � O (1 ≤ i ≤ `)
22

11

12

C

X

X

X

where Ci, Ai1, · · · , Aim ∈ Sni (1 ≤ i ≤ `), b ∈ R
m are given

admits multiple block matrices

Sn : space of n × n-symmetric matrices
Xi ∈ Sni : primal matrix variables
Si ∈ Sni : dual matrix variables, y ∈ R

m : dual vector variable
X � O : X is symmetric positive semidefinite matrix
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Existing Methods and General Solvers for SDPs

(I) Primal-dual path-following interior-point methods
- general formulation, several search directions: NT, H..K..M, etc.
- CSDP6.0.1, SDPA7.1.0, SDPT34.0β, SeDuMi1.1R3, SDPARA1.0.1

(Ia) Krylov Iterative Methods
- (Nakata-Fujisawa-Kojima PISM’98, Lin-Saigal BIT’00, Toh-Kojima SIOPT ’02,

Toh SIOPT ’03)
(II) Dual interior-point methods

- uses only dual variables
- DSDP5.8 (S.Benson-Ye-Y.Zhang SIOPT’00)

(III) Spectral Bundle method
- SBmethod1.1.3 (Helmberg-Rendl SIOPT’00)

(IV) Nonlinear formulation
- PENNON (Kočvara-Stingl OMS’02)
- SDPLR1.02 (Burer-Monteiro MPb’03)
- etc.
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Interior-Point Methods for SDPs

µ > 0
(µ → 0)

Primal

8

>

>

<

>

>

:

minimize
P`

i=1 tr(CiXi) − µ log det Xi

subject to
P`

i=1 tr(AipXi) = bp (1 ≤ p ≤ m)

Xi � O (1 ≤ i ≤ `)

Dual

8

>

>

<

>

>

:

maximize
Pm

p=1 bpyp +
P`

i=1 µ log det Si +constant

subject to
Pm

p=1 Aipyp + Si = Ci (1 ≤ i ≤ `)

Si � O (1 ≤ i ≤ `)

Optimality conditions�

�

�

�

Xi � O,
P`

i=1 tr(AipXi) = bp (1 ≤ p ≤ m)

Si � O,
Pm

p=1 Aipyp + Si = Ci (1 ≤ i ≤ `)

XiSi = µI

optimal solution

central trajectory
(X(µ), S(µ), y(µ))

Schur Complement Equation
8

<

:

Mdy = u

(Cholesky/CG)

(dX, dS, dy)
(µ −→ 0)

�
�

�
�+Q

QQk
���
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Primal and Dual SDP Formulations

SDP software only accepts problems in a specific formulation
⇑ critical restriction

Primal











minimize
∑`

i=1
tr(CiXi)

subject to
∑`

i=1
tr(AipXi) = bp (1 ≤ p ≤ m)

Xi � O (1 ≤ i ≤ `)

Dual











maximize
∑m

p=1
bpyp

subject to
∑m

p=1
Aipyp + Si = Ci (1 ≤ i ≤ `)

Si � O (1 ≤ i ≤ `)

We can choose between formulate as a primal or dual SDP
Examples of primal SDP formulation (and dual SDP formulation)
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Fermionic System with N electrons with 1-RDM (1/3)



















minimize tr(H1γ)

subject to tr(N̂γ) = N

γ � 0
I − γ � 0

where
r : spin orbitals or rank
γ ∈ Sr : 1-RDM
H1 ∈ Sr : one-body Hamiltonian
N̂ : number operator
� 0 : rhs matrix is positive semidefinite
I : identity matrix
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Fermionic System with N electrons with 1-RDM (2/3)

{

γ � 0
I − γ � 0

⇔ γ̃ =

(

γ̃1 0

0 γ̃2

)

=

(

γ 0

0 I − γ

)

� 0

⇒ [γ̃1]ij + [γ̃2]ij = δi
j , i, j = 1, 2, . . . , r

H̃1 =

(

H1 0

0 0

)

, Ñ =

(

N̂ 0

0 0

)

, Aij =

(

Eij 0

0 Eij

)

where

Eij =

{

1, for (i, i)

1/2, for (i, j) or (j, i), i < j

⇒ tr(H̃1γ̃) = tr(H1γ)

⇒ tr(Ñ γ̃) = tr(N̂γ) = N

⇒ tr(Aij γ̃) = [γ̃1]ij + [γ̃2]ij = δi
j
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Fermionic System with N electrons with 1-RDM (3/3)

�
�

�
�Primal SDP Formulation



















minimize tr(H̃1γ̃)

subject to tr(Ñ γ̃) = N

tr(Aij γ̃) = δi
j , 1 ≤ i ≤ j ≤ r

γ̃ � 0

Primal































minimize
∑̀

i=1

tr(CiXi)

subject to
∑̀

i=1

tr(AipXi) = bp (1 ≤ p ≤ m)

Xi � O (1 ≤ i ≤ `)
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Fermionic System with N electrons with 2-RDM and P ,Q (1/3)











minimize tr(HΓ)

subject to tr(N̂Γ) = N

Γ � 0, Q � 0

r : spin orbitals or rank
Γ ∈ Sr2 : 2-RDM
H ∈ Sr2 : 2-body Hamiltonian
P : 2Γi1i2

j1j2

Q : (δi1
j1

δi2
j2
− δi1

j2
δi2
j1

) − (δi1
j1

γi2
j2

+ δi2
j2

γi1
j1

) + (δi1
j2

γi2
j1

+ δi2
j1

γi1
j2

)

+2Γi1i2
j1j2

P , Q matrices have 4 indices, and need to be mapped to a 2
indices matrix
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Fermionic System with N electrons with 2-RDM and P ,Q (2/3)

{

P = 2Γ � 0
Q � 0

⇔ Γ̃ =

(

Γ 0

0 Q

)

� 0, let H̃ =

(

H 0

0 0

)

,

Ñ =

(

N̂ 0

0 0

)

, Ai1i2,j1j2 =

(

Ẽi1i2,j1j2 − Ei1i2,j1j2 0

0 Ei1i2,j1j2

)

where

Ei1i2,j1j2 =











1, for (i1 + (i2 − 1)r, i1 + (i2 − 1)r)

1/2, for (i1 + (i2 − 1)r, j1 + (j2 − 1)r)

1/2, for (j1 + (j2 − 1)r, i1 + (i2 − 1)r), i1 < j1

Ẽi1i2,j1j2 =

r
∑

k=1

(δi1
j1

Ei2,k,j2,k+δi2
j2

Ei1k,j1k−δi1
j2

Ei2k,j1k−δi2
j1

Ei1k,j2k)/(N−1)
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Fermionic System with N electrons with 2-RDM and P ,Q (3/3)

�
�

�
�Primal SDP Formulation



























minimize tr(H̃Γ̃)

subject to tr(Ñ Γ̃) = N

tr(Ai1i2,j1j2Γ̃) = δi1
j1

δi2
j2
− δi1

j2
δi2
j1

, 1 ≤ i1 ≤ j1 ≤ r

1 ≤ i2 ≤ j2 ≤ r

Γ̃ � 0

Primal































minimize
∑̀

i=1

tr(CiXi)

subject to
∑̀

i=1

tr(AipXi) = bp (1 ≤ p ≤ m)

Xi � O (1 ≤ i ≤ `)
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SDP Problem Sizes

Primal































minimize
∑̀

i=1

tr(CiXi)

subject to
∑̀

i=1

tr(AipXi) = bp (1 ≤ p ≤ m)

Xi � O (1 ≤ i ≤ `)

Sni : space of ni × ni-symmetric matrices
Xi ∈ Sni : primal matrix variables

Size of an SDP: # of constraints m
dimension of matrices ni

Also depends on the sparsity of the matrices Ci and Aip
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SDP Sizes in Primal SDP Formulation

dimension of matrices ni

P (r/2)2 × (r/2)2 (1 block),

0

@

r/2

2

1

A ×

0

@

r/2

2

1

A (2 blocks)

Q (r/2)2 × (r/2)2 (1 block),

0

@

r/2

2

1

A ×

0

@

r/2

2

1

A (2 blocks)

G 2(r/2)2 × 2(r/2)2 (1 block), (r/2)2 × (r/2)2 (2 blocks)

# of constraints m

P, Q, G 5 + 3

0

@

r2/4 + 1

2

1

A + 2

0

@

r(r/2 − 1)/4 + 1

2

1

A +

0

@

r2/2 + 1

2

1

A

where
0

@

a

b

1

A = a!
b!(a−b)!

, r spin orbitals or rank
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SDP Sizes in Primal SDP Formulation

P, Q, G P, Q, G, T1 P, Q, G, T1, T2′

r m ni (max) m ni (max) m ni (max)
8 983 32 1603 24 10971 92

10 2365 50 5025 50 40685 180
12 4871 72 13481 90 120449 312
14 8993 98 32009 147 303385 497
16 15313 128 68905 224 677241 744
18 24503 162 136943 324 1377071 1062
20 37325 200 254795 450 2599915 1460
22 54631 242 448651 605 4621479 1947
24 77363 288 754039 792 7814815 2532
26 106553 338 1217845 1014 12671001 3224
28 143323 392 1900533 1274 19821821 4032
30 188885 450 2878565 1575 30064445 4965
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Dual SDP Formulation

{

minimize tr(H1γ) + tr(H2Γ)

subject to P, Q, G, T1, T2′ conditions

⇓ γ, Γ corresponds to the variable y

Dual











maximize
∑m

p=1
bpyp

subject to
∑m

p=1
Aipyp + Si = Ci (1 ≤ i ≤ `)

Si � O (1 ≤ i ≤ `)
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SDP Sizes in Dual SDP Formulation

dimension of matrices ni

P (r/2)2 × (r/2)2 (1 block),

0

@

r/2

2

1

A ×

0

@

r/2

2

1

A (2 blocks)

Q (r/2)2 × (r/2)2 (1 block),

0

@

r/2

2

1

A ×

0

@

r/2

2

1

A (2 blocks)

G 2(r/2)2 × 2(r/2)2 (1 block), (r/2)2 × (r/2)2 (2 blocks)

T1 r
2

0

@

r/2

2

1

A × r
2

0

@

r/2

2

1

A (2 blocks),

0

@

r/2

3

1

A ×

0

@

r/2

3

1

A (2 blocks)

# of constraints m

any

0

@

r2/4 + 1

2

1

A + 2

0

@

r(r/2 − 1)/4 + 1

2

1

A and 5

where
0

@

a

b

1

A = a!
b!(a−b)!

, r spin orbitals or rank
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SDP Sizes in Dual SDP Formulation

P, Q, G P, Q, G, T1 P, Q, G, T1, T2′

r m s ni (max) ni (max) ni (max)
8 178 5 32 24 92
10 435 5 50 50 180
12 906 5 72 90 312
14 1687 5 98 147 497
16 2892 5 128 224 744
18 4653 5 162 324 1062
20 7120 5 200 450 1460
22 10461 5 242 605 1947
24 14862 5 288 792 2532
26 20527 5 338 1014 3224
28 27678 5 392 1274 4032
30 36555 5 450 1575 4965
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Primal SDP Formulation x Dual SDP Formulation

r = 10 r = 20 r = 30

m ni (max) m ni (max) m ni (max)
P, Q, G primal 2,365 50 37,325 200 188,885 450

dual 435 50 7,120 200 36,555 450
P, Q, G primal 5,025 50 254,795 450 2,878,565 1,575
T1 dual 435 50 7,120 450 36,555 1,575
P, Q, G primal 40,685 180 2,599,915 1,460 30,064,445 4,965
T1, T2′ dual 435 180 7,120 1,460 36,555 4,965

The number of constraints m on the dual SDP formulation does
not depend on the N -representability conditions
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Number of Iterations by Interior-Point Method for H2O (double-ζ, r = 28) with PGQ,PQGT1T2′
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Interior-Point Methods always converge regardless of the chosen
initial point
Each iteration is very cost, but its convergence is extremely fast
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RRSDP Method (D. A. Mazziotti)

parallel interior-point methods seems the correct approach
⇒ because need to solve SDPs with high accuracy ... BUT
D. A. Mazziotti, “Realization of quantum chemistry without wave functions through

first-order semidefinite programming”, Physical Review Letters (93) 213001 (2004)

⇒ first-order method (RRSDP)
{

minimize
∑`

i=1
tr(CXi)

s.t.
∑`

i=1
tr(AipX) = bp (p = 1, . . . , m), X i � O

Sni 3 Xi = RiR
T
i � O, where Ri ∈ R

ni×ni

nonlinear problem ⇐ augmented Lagrangian + L-BFGS
very similar to Burer-Monteiro’s low-rank factorization
S. Burer, and R. D. C. Monteiro, “A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization”, Mathematical Programming
Series B 95 329 (2003); S. Burer and R. D. C. Monteiro, “Local minima and
convergence in low-rank semidefinite programming”, Mathematical Programming
103 427 (2005)
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Floating-Point Operations and Memory Usage by PDIPM and RRSDP

N -representability
conditions P , Q, G

formulation algorithm FLOPI # iterations memory
primal SDP PDIPM r12 r ln ε−1 r8

formulation RRSDP r6 ? r4

dual SDP PDIPM r12 r ln ε−1 r8

formulation RRSDP r6 ? r4

N -representability P , Q, G, T1 or
conditions P , Q, G, T1, T2′

formulation algorithm FLOPI # iterations memory
primal SDP PDIPM r18 r3/2 ln ε−1 r12

formulation RRSDP r9 ? r6

dual SDP PDIPM r12 r3/2 ln ε−1 r8

formulation RRSDP r9 ? r6
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Concluding Remarks

From the limitations of the SDP software, the dual SDP
formulation is the correct approach
Very accurate values for the ground state energy for atoms and

molecules and 1-D Hubbard Model can be calculated

Today 4:15-4:45 Maho Nakata, “The Reduced Density Matrix Method:
Applications of T2′ N -representability Conditions and Development of Highly
Accurate Solver”

There is a severe limit on the size of the systems due to the SDP
problem size (r = 28 with P , Q, G, T1, T2′ conditions)
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