Recent progresses in the variational reduced－density－matrix method

中田真秀（NAKATA，Maho） maho＠riken．jp
http：／／accc．riken．jp／maho／

理化学研究所（RIKEN），Advanced Center for Computing and Communication

The 50th Sanibel Symposium（February 24 －March 2，2010）

Collaborators current and past

- 福田光浩（Fukuda Mituhiro）
- 安田耕二（Yasuda Koji）
－Bastiaan J．Braams
－Jerome K．Percus
- 藤澤克樹（Fujisawa Katsuki）
- 山下真（Yamashita Makoto）
－Michael Overton
－Zhengji Zhao
- 中田和秀（Nakata Kazuhide）
- 江原正博（Ehara Masahiro）
- 中辻博（Nakatsuji Hiroshi）

Overview

- Introduction of the RDM method.
- Recent results.
- Some open problems.

Part 1

Introduction of the RDM method.

What is the RDM method in short?

What is the RDM method in short?

The RDM method: 2-RDM as basic variable

What is the RDM method in short?

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

What is the RDM method in short?

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Equivalent to the Schrödinger equation

What is the RDM method in short?

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Equivalent to the Schrödinger equation Ground state energy: Minimize directly!

What is the RDM method in short?

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Equivalent to the Schrödinger equation
Ground state energy: Minimize directly!
N-representability condition; the only one approximation

Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- ab initio...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- ab initio...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

The ground state and energy calculation

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

The ground state and energy calculation

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

$$
H=\sum_{i j} v_{j}^{i} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}
$$

The ground state and energy calculation

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

$$
H=\sum_{i j} v_{j}^{i} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}
$$

The ground state energy becomes...

$$
\begin{aligned}
E_{g} & =\min \langle\Psi| H|\Psi\rangle \\
& =\min \sum_{i j} v_{j}^{i}\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle+\frac{1}{2} \sum_{i_{1} i_{j_{1} j_{2}}} w_{j_{1} j_{2}}^{i_{1} i_{2}}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle \\
& =\min \left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}\right\}
\end{aligned}
$$

The ground state and energy calculation

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

$$
H=\sum_{i j} v_{j}^{i} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}
$$

The ground state energy becomes...

$$
\begin{aligned}
E_{g} & =\min \langle\Psi| H|\Psi\rangle \\
& =\min \sum_{i j} v_{j}^{i}\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle+\frac{1}{2} \sum_{i_{1} i_{j_{1} j_{2}}} w_{j_{1} j_{2}}^{i_{1} i_{2}}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle \\
& =\min \left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}\right\}
\end{aligned}
$$

Definition of 1, 2-RDMs

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle, \quad \gamma_{j}^{i}=\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle
$$

N-representability condition

N-representability condition

[Mayers 1955], [Tredgold 1957]: Far lower than the exact one

N-representability condition

[Mayers 1955], [Tredgold 1957]: Far lower than the exact one N-representability condition [Coleman 1963]

$$
E_{g}=\min _{\mathcal{P}}\left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}\right\}
$$

$\gamma, \Gamma \in \mathcal{P}$ should satisfy N-representability condition:

$$
\begin{gathered}
\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right) \rightarrow \Psi(123 \cdots N) \\
\gamma\left(1 \mid 1^{\prime}\right) \rightarrow \Psi(123 \cdots N)
\end{gathered}
$$

Encodes two-body effects completely. Very compact.

Approximate N-representability condition

Approximation (necessary) condition : where Physics and Chemistry are

Approximate N-representability condition

Approximation (necessary) condition : where Physics and Chemistry are

- $\boldsymbol{P}, \boldsymbol{Q}$-condition, ensemble 1-RDM condition [Coleman 1963]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod and Percus 1964]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod and Percus 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])

Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod and Percus 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])
- T1, T2, T2', ($\overline{\boldsymbol{T}} \mathbf{2}$)-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod and Percus 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])
- T1, $\boldsymbol{T 2}, \boldsymbol{T 2}^{\prime}$, ($\overline{\boldsymbol{T}} \mathbf{2}$)-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]
- Davidson's inequality [Davidson 1969][Ayers et al. 2006]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- \boldsymbol{G}-condition [Garrod and Percus 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])
- T1, $\boldsymbol{T 2}, \boldsymbol{T 2}^{\prime},(\overline{\boldsymbol{T}} \mathbf{2})$-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]
- Davidson's inequality [Davidson 1969][Ayers et al. 2006]
- Construction of 2-particle density [Pistol 2004, 2006]

Approximate N-representability condition

Summary 1: the RDM method is an ab initio method

Summary 1: the RDM method is an ab initio method

- Can evaluate total energy exactly via 1 and 2-RDM

Summary 1: the RDM method is an ab initio method

- Can evaluate total energy exactly via 1 and 2-RDM
- only one approximation is N-representability condition (aka theory of everything)

Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- ab initio...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

Mathematically simpler: number of variables are always four

Mathematically simpler: number of variables are always four

Method \# of variable (discritized) Exact?

$\boldsymbol{\Psi}$	$\boldsymbol{N},(\boldsymbol{r}!)$	Yes
$\boldsymbol{\Gamma}\left(\mathbf{1 2} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$	$\mathbf{4},\left(\boldsymbol{r}^{\mathbf{4}}\right)$	Yes

Mathematically simpler: number of variables are always four

Do not depend on the size of the system

Mathematically simpler: number of variables are always four

Method \# of variable (discritized) Exact?

$\boldsymbol{\Psi}$	$\boldsymbol{N},(\boldsymbol{r}!)$	Yes
$\boldsymbol{\Gamma}\left(\mathbf{1 2} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$	$\mathbf{4},\left(\boldsymbol{r}^{\mathbf{4}}\right)$	Yes

Do not depend on the size of the system
Equivalent to Schrödinger eq. (ground state)

Mathematically simpler: minimization of linear functional

Mathematically simpler: minimization of linear functional

$E_{\mathrm{g}}=\underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} H \Gamma$
$\mathcal{P}=\{\Gamma:$ Approx. N-rep.condition $\}$

PSD type N-representability conditions

PSD type N-representability conditions

$\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T 1}, \boldsymbol{T 2}$-matrix are all positive semidefinite \leftrightarrow eigenvalues $\lambda_{i} \geq \mathbf{0}$

$$
U^{\dagger} \boldsymbol{\Gamma} \boldsymbol{U}=\left[\begin{array}{llll}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right] \geq 0
$$

First application to Be atom
[Garrod et al 1975, 1976]
Calculation methods are not very well studied...

Realization of the RDM method for atoms and molecules

Realization of the RDM method for atoms and molecules

$E_{\mathrm{g}}=\underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} H \Gamma$ $\Gamma \in \mathcal{P}$
$\mathcal{P}=\{\boldsymbol{\Gamma}$: Approx. \boldsymbol{N}-rep.condition $\}$

Realization of the RDM method for atoms and molecules

$$
\begin{gathered}
\boldsymbol{E}_{\mathrm{g}}=\underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} \boldsymbol{H} \boldsymbol{\Gamma} \\
\mathcal{P}=\{\boldsymbol{\Gamma}: \text { Approx. } N \text {-rep.condition }\}
\end{gathered}
$$

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved exactly for the first time!

Realization of the RDM method for atoms and molecules

$$
\begin{gathered}
\boldsymbol{E}_{\mathbf{g}}=\underset{\boldsymbol{\Gamma} \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} \boldsymbol{H} \boldsymbol{\Gamma} \\
\mathcal{P}=\{\boldsymbol{\Gamma}: \text { Approx. } N \text {-rep.condition }\}
\end{gathered}
$$

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved exactly for the first time!
Small enough "primal dual gap, feasibility" values show that total energies etc are MATHEMATICALLY correct

Mathematically simpler: polynomial algorithm

Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm

Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- N-representability conditions: $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T 1}, \boldsymbol{T 2}^{\prime}$ polynomial

Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- N-representability conditions: $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T} \mathbf{1}, \boldsymbol{T 2} \mathbf{2}^{\prime}$ polynomial
- Hartree-Fock: NP-hard (not O($\left.N^{4}\right)$!)

Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- N-representability conditions: $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T} \mathbf{1}, \boldsymbol{T 2}{ }^{\prime}$ polynomial
- Hartree-Fock: NP-hard (not $\mathrm{O}\left(N^{4}\right)$!)
- HF ref. MP2, Coupled cluster: NP-hard, post Hartree-Fock part is ponlynomial

Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- N-representability conditions: $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T} \mathbf{1}, \boldsymbol{T 2}{ }^{\prime}$ polynomial
- Hartree-Fock: NP-hard (not O($\left.N^{4}\right)$!)
- HF ref. MP2, Coupled cluster: NP-hard, post Hartree-Fock part is ponlynomial
- HF ref. Trancated CI: NP-hard, post Hartree-Fock part is ponlynomial

Summary 2: the RDM method is a simpler (and possibly faster) method

Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.

Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.
- Minimization of linear functional.

Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.
- Minimization of linear functional.
- Semidefinite programming solved exactly for the first time M.N.'s major contribution

Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.
- Minimization of linear functional.
- Semidefinite programming solved exactly for the first time M.N.'s major contribution
- polynomial algorithm (cf. Hartree-Fock is NP-hard).

Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- ab initio...with theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

Physical and Chemical meaning of approx. N-representability condition

Theoretical

Physical and Chemical meaning of approx. N-representability condition

Theoretical

- $\boldsymbol{P}, \boldsymbol{Q}$ condition: electron and hole exist [Coleman].

Physical and Chemical meaning of approx. N-representability condition

Theoretical

- $\boldsymbol{P}, \boldsymbol{Q}$ condition: electron and hole exist [Coleman].
- G condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].

Physical and Chemical meaning of approx. N-representability condition

Theoretical

- $\boldsymbol{P}, \boldsymbol{Q}$ condition: electron and hole exist [Coleman].
- \boldsymbol{G} condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- \boldsymbol{G} condition: exact for high correlation of limit of Hubbard model [submitted].
Practical

Physical and Chemical meaning of approx. N-representability condition

Theoretical

- $\boldsymbol{P}, \boldsymbol{Q}$ condition: electron and hole exist [Coleman].
- \boldsymbol{G} condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- \boldsymbol{G} condition: exact for high correlation of limit of Hubbard model [submitted].
Practical
- $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{G} condition: $\mathbf{1 0 0} \boldsymbol{\sim} \mathbf{1 3 0 \%}$ corr. [Nakata et af] [Mazziotti eta) [Eric et al]

Physical and Chemical meaning of approx. N-representability condition

Theoretical

- $\boldsymbol{P}, \boldsymbol{Q}$ condition: electron and hole exist [Coleman].
- \boldsymbol{G} condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- \boldsymbol{G} condition: exact for high correlation of limit of Hubbard model [submitted].
Practical
- $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{G} condition: $\mathbf{1 0 0} \boldsymbol{\sim} \mathbf{1 3 0 \%}$ corr. [Nakata et af] [Mazziotti eta) [Eric et al]
- P, Q, G, T1, T2' condition: $100 \sim \mathbf{1 0 1 \%}$ corr. [zhao et al], [Nakata et al]

Physical and Chemical meaning of approx. N-representability condition

Theoretical

- $\boldsymbol{P}, \boldsymbol{Q}$ condition: electron and hole exist [Coleman].
- G condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- \boldsymbol{G} condition: exact for high correlation of limit of Hubbard model [submitted].
Practical
- $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{G} condition: $\mathbf{1 0 0} \boldsymbol{\sim} \mathbf{1 3 0 \%}$ corr. [Nakata et af] [Mazziotti eta) [Eric et al]
- P, Q, G, T1, T2' condition: $100 \sim \mathbf{1 0 1 \%}$ corr. [zhao et al], [Nakata e al a]
- $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{G} condition: dissociation limit (sometimes fails). [Nakata et al], [Mazziotti], [H. Aggelen et al]

The ground state energy of atoms and molecules [Nakata et al 2008]

System	State	$\boldsymbol{N} \boldsymbol{r}$	$\Delta \mathrm{E}_{\text {GT1T2 }}$	$\Delta \mathrm{E}_{\text {GT1T2 }}$	$\Delta \mathrm{E}_{\text {CCSD }(T)}$	$\Delta \mathrm{E}_{\boldsymbol{H} F}$	$\mathrm{E}_{F C I}$
C	${ }^{3} \mathrm{P}$	620	-0.0004	-0.0001	+0.00016	+0.05202	-37.73653
O	${ }^{1} \mathrm{D}$	820	-0.0013	-0.0012	+0.00279	+0.10878	-74.78733
Ne	${ }^{1} S$	1020	-0.0002	-0.0001	-0.00005	+0.11645	-128.63881
O_{2}^{+}	${ }^{2} \Pi_{g}$	1520	-0.0022	-0.0020	+0.00325	+0.17074	-148.79339
BH	${ }^{1} \Sigma^{+}$	624	-0.0001	-0.0001	+0.00030	+0.07398	-25.18766
CH	${ }^{2} \Pi_{r}$	724	-0.0008	-0.0003	+0.00031	+0.07895	-38.33735
NH	${ }^{1} \Delta$	824	-0.0005	-0.0004	+0.00437	+0.11495	-54.96440
HF	${ }^{1} \Sigma^{+}$	1424	-0.0003	-0.0003	+0.00032	+0.13834	-100.16031
SiH_{4}	${ }^{1} A_{1}$	1826	-0.0002	-0.0002	+0.00018	+0.07311	-290.28490
F^{-}	${ }^{1} S$	1026	-0.0003	-0.0003	+0.00067	+0.15427	-99.59712
P	${ }^{4} S$	1526	-0.0001	-0.0000	+0.00003	+0.01908	-340.70802
$\mathrm{H}_{2} \mathrm{O}$	${ }^{1} A_{1}$	1028	-0.0004	-0.0004	+0.00055	+0.14645	-76.15576

GT1T2 : The RDM method ($\boldsymbol{P}, \mathbf{Q}, \boldsymbol{G}, \boldsymbol{T 1}$ and $\boldsymbol{T 2}$ conditions)
GT1T2' : The RDM method ($P, Q, G, T 1$ and $T 2^{\prime}$ conditions)
$\operatorname{CCSD}(\mathrm{T})$: Coupled cluster singles and doubles with perturbation treatment of triples
HF : Hartree-Fock
FCl : FullCl

Application to potential energy curve

- Dissociation curve of $\mathbf{N}_{\mathbf{2}}$ (triple bond) the world first result. [Nakata-Nakatsuji-Ehara 2002]

Part 2

Recent results: non-size extensivity

Size-extensivity and consistency

Size extensivity or consistency is very important property for a calculation theory.

$$
E(A-- \text { infinity }--A)=E(A)+E(A) ?
$$

Size-extensivity and consistency

Size-extensivity and consistency

- Not size consistnt: [Nakata-Nakatsuji-Ehara 2002] (small deviation), [Aggelen-Bultinck-Verstichel-VanNeck-Ayers 2009] (fractional charge!)

Size-extensivity and consistency

- Not size consistnt: [Nakata-Nakatsuji-Ehara 2002] (small deviation),
[Aggelen-Bultinck-Verstichel-VanNeck-Ayers 2009] (fractional charge!)
- Not size extensive: [Nakata-Yasuda 2009] PRA80,042109(2009).
- $\mathbf{C H}_{\mathbf{4}}, \mathbf{N}_{\mathbf{2}}$ non interacting polymers: slightly deviated
- primal-dual interior point method is mandatory; Monteiro-Bruner [Mazziotti 04] is inaccurate.

Size-extensivity: \mathbf{N}_{2} polymer

$\mathbf{N}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}} \mathbf{N}_{\mathbf{2}} \cdots \mathbf{N}_{\mathbf{2}}$ non interacting, \boldsymbol{N}-rep.: $\mathbf{P Q G}$

$E(M)=-108.71553+0.00302 M^{-2} .3 \times 10^{-4}$ au

Size-extensivity: CH_{4} polymer

$\mathbf{C H}_{\mathbf{4}} \mathbf{C H}_{\mathbf{4}} \mathbf{C H}_{\mathbf{4}} \cdots \mathrm{CH}_{\mathbf{4}}$ non interacting, N-rep.: $P Q G$

Nither PQG nor PQGT1T2' are size-extensive

Size-extensivity: Inaccurate result by Monteiro-Bruner method

$\mathbf{H}_{2} \mathbf{O}$: solved by Monteiro-Bruner method [Mazziotti 2004]: \# of iteration req'ed scale like exponential. Not converged with CO (double-ऽ).

Summary: the RDM method in short

Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Equivalent to the Schrödinger equation

Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Equivalent to the Schrödinger equation
Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]

Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Equivalent to the Schrödinger equation
Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]
N-rep: PQGT1T2' $100 \mathbf{\sim 1 0 1 \%}$ [Zhao et al 2004]

Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Equivalent to the Schrödinger equation
Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]
N-rep: PQGT1T2' $100 \mathbf{\sim 1 0 1 \%}$ [Zhao et al 2004]
Polynomial method but takes very long time: H 2 O double- $\zeta 1$ day

Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

$\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle$

Equivalent to the Schrödinger equation
Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]
N-rep: PQGT1T2' 100 ~ $\mathbf{1 0 1 \%}$ [Zhao et al 2004]
Polynomial method but takes very long time: H 2 O double- $\zeta 1$ day Hopeful and still lot of unknowns!

How many iterations are needed?

How many iterations are required by

- primal-dual interior-point method (PDIPM) or
- Monteiro-Bruner method (RRSDP) [Mazziotti 2004]

	$\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{G}			$\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T} \mathbf{1}, \boldsymbol{T} \mathbf{2}$		
algorithm	flops	\# iterations	memory	flops	\# iterations	memory
PDIPM	\boldsymbol{r}^{12}	$\boldsymbol{r} \ln \boldsymbol{\varepsilon}^{-1}$	$\boldsymbol{r}^{\mathbf{8}}$	\boldsymbol{r}^{12}	$\boldsymbol{r}^{\mathbf{3 / 2}} \ln \boldsymbol{\varepsilon}^{-1}$	$\boldsymbol{r}^{\mathbf{8}}$
RRSDP	$\boldsymbol{r}^{\mathbf{6}}$	none	\boldsymbol{r}^{4}	\boldsymbol{r}^{9}	none	$\boldsymbol{r}^{\mathbf{6}}$

Note: when we stop the iteration is a big problem

How large these SDP are?

\# of constraints

r constraints block

24	15018	$2520 \times 2,792 \times 4,288 \times 1,220 \times 2$
26	20709	$3211 \times 2,1014 \times 4,338 \times 1,286 \times 2$

Elapsed time using Itanium 2 (1.3 GHz) 1 node 4 processors. System, State, Basis $\quad N$-rep. $\quad r \quad$ Time \# of nodes $\mathbf{S i H}_{4},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, STO-6G PQGT1T2 $26 \quad 5.1$ days $\quad 16$ $\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, double- $\zeta \quad \boldsymbol{P Q G} \quad 28 \quad 2.2$ hours $\quad 8$ $\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{1}$, double- $\zeta \quad$ PQGT1T2 $28 \quad 20$ days $\quad 8$ $\begin{array}{lllll}\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{\mathbf{1}}, \text { double- } \zeta & \boldsymbol{P Q G T 1 T 2} & 28 & 24 \text { days } & 8\end{array}$

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1}+\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1}+\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$
- GMP (60 digits; can be arbitrary)

$$
1+0.001 \simeq 1
$$

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$
- GMP (60 digits; can be arbitrary)
$1+\mathbf{0 . 0 1 \simeq 1}$
- GMP (GNU multiple precision)

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1}+\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$
- GMP (60 digits; can be arbitrary) $1+0.001 \simeq 1$
- GMP (GNU multiple precision) \Rightarrow necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP) http://sdpa.indsys.chuo-u.ac.jp/sdpa/ GNU Public License

SDPA-GMP and Hubbard model

The 1D Hubbard model with high correlation limit $|U / t| \rightarrow \infty$: All states are almost degenerated.

The ground state energies of 1D Hubbard model
PBC, \# of sites:4, \# of electrons: 4, spin 0

U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCl
10000.0	0	-1.1999998800000251 $\times 10^{-3}$	-1.1999998880 $\times 10^{-3}$
1000.0	-1.2 $\times 10^{-2}$	-1.1999880002507934 $\times 10^{-2}$	$-1.1999880002 \times 10^{-2}$
100.0	-1.1991×10^{-1}	-1.1988025013717993 $\times 10^{-1}$	-1.19880248946 $\times 10^{-1}$
10.0	-1.1000	-1.0999400441222934	-1.099877772750
1.0	-3.3417	-3.3416748070259956	-3.340847617248
PBC, \# of sites:6, \# of electrons: 6, spin 0			
U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCl
10000.0	0	-1.7249951195749525 $\times 10^{-3}$	-1.721110121 $\times 10^{-3}$
1000.0	-1×10^{-2}	$-1.7255360310431304 \times 10^{-2}$	$-1.7211034713 \times 10^{-2}$
100.0	-1.730×10^{-1}	-1.7302157140594339 $\times 10^{-1}$	-1.72043338097 $\times 10^{\mathbf{- 1}}$
10.0	-1.6954	-1.6953843276854447	-1.664362733287
1.0	-6.6012	-6.6012042217806286	-6.601158293375

