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Overview

Introduction of the RDM method.
Recent results.
Some open problems.
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Part 1

Introduction of the RDM method.
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What is the RDM method in short?

The RDM method: 2-RDM as basic variable

Γ
i1i2
j1 j2
= 1

2〈Ψ|a
†
i1

a†
i2

a j2a j1|Ψ〉

Equivalent to the Schrödinger equation
Ground state energy: Minimize directly!

N-representability condition; the only one approximation
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Our goal: doing chemistry from the first
principle, faster calculation and deeper

understanding

�� ��Our target

ab initio...theoretically and practically good
approximation
faster method ...mathematically simpler
deeper understanding...electronic structure
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The ground state and energy calculation
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

H =
∑
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The ground state energy becomes...
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Definition of 1, 2-RDMs
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i1 i2
j1 j2
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1
2
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i2
a j2 a j1 |Ψ〉, γi

j = 〈Ψ|a
†
i
a j|Ψ〉.
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[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

H =
∑

i j

vi
ja
†
i
a j +

1
2

∑
i1 i2 j1 j2

wi1 i2
j1 j2

a†
i1

a†
i2

a j2 a j1

The ground state energy becomes...

Eg = min〈Ψ|H|Ψ〉

= min
∑

i j

vi
j〈Ψ|a

†
i
a j|Ψ〉 +

1
2

∑
i1 i2 j1 j2

wi1 i2
j1 j2
〈Ψ|a†

i1
a†

i2
a j2 a j1 |Ψ〉

= min{
∑

i j

vi
jγ

i
j +
∑

i1 i2 j1 j2

wi1 i2
j1 j2
Γ

i1 i2
j1 j2
}

Definition of 1, 2-RDMs

Γ
i1 i2
j1 j2
=

1
2
〈Ψ|a†

i1
a†

i2
a j2 a j1 |Ψ〉, γi

j = 〈Ψ|a
†
i
a j|Ψ〉.

NAKATA, Maho (RIKEN, ACCC) Recent progresses in the variational reduced-density-matrix methodSanibel symposium 2010/2/25 8 / 34



N-representability condition

[Mayers 1955], [Tredgold 1957]: Far lower than the exact one
N-representability condition [Coleman 1963]

Eg = min
P
{
∑

i j

vi
jγ

i
j +
∑

i1i2 j1 j2

wi1i2
j1 j2
Γ

i1i2
j1 j2
}

γ, Γ ∈ P should satisfy N-representability condition:

Γ(12|1′2′) → Ψ(123 · · · N)

γ(1|1′) → Ψ(123 · · · N).�� ��Encodes two-body effects completely. Very compact.
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Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

P, Q-condition, ensemble 1-RDM condition [Coleman 1963]

G-condition [Garrod and Percus 1964]

k-th order approximation [Erdahl, Jin 2000] (aka k-positivity
[Mazziotti Erdahl 2001])

T1, T2, T2′, (T̄2)-condition [Zhao et al. 2004], [Erdahl 1978]
[Braams et al 2007] [Mazziotti 2006, 2007]

Davidson’s inequality [Davidson 1969][Ayers et al. 2006]

Construction of 2-particle density [Pistol 2004, 2006]
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Approximate N-representability condition

NAKATA, Maho (RIKEN, ACCC) Recent progresses in the variational reduced-density-matrix methodSanibel symposium 2010/2/25 11 / 34



Summary 1: the RDM method is an ab initio
method

Can evaluate total energy exactly via 1 and 2-RDM

only one approximation is N-representability
condition (aka theory of everything)
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Mathematically simpler:
number of variables are always four

Method # of variable (discritized) Exact?
Ψ N, (r!) Yes

Γ(12|1′2′) 4, (r4) Yes

Do not depend on the size of the system
Equivalent to Schrödinger eq. (ground state)
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Mathematically simpler:
minimization of linear functional

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

NAKATA, Maho (RIKEN, ACCC) Recent progresses in the variational reduced-density-matrix methodSanibel symposium 2010/2/25 15 / 34



Mathematically simpler:
minimization of linear functional

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

NAKATA, Maho (RIKEN, ACCC) Recent progresses in the variational reduced-density-matrix methodSanibel symposium 2010/2/25 15 / 34



PSD type N-representability conditions

P,Q,G,T1,T2-matrix are all positive semidefinite↔
eigenvalues λi ≥ 0

U†ΓU =


λ1 0
λ2
. . .

0 λn

 � 0

First application to Be atom
[Garrod et al 1975, 1976]

Calculation methods are not very well studied...
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Realization of the RDM method for atoms
and molecules

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming
We solved exactly for the first time!

Small enough “primal dual gap, feasibility” values show that total energies etc are MATHEMATICALLY correct
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Mathematically simpler:
polynomial algorithm

Semidefinite programming: prima-dual
interior-point method polynomial algorithm
N-representability conditions: P, Q, G, T1, T2′
polynomial
Hartree-Fock: NP-hard (not O(N4)! )
HF ref. MP2, Coupled cluster: NP-hard, post
Hartree-Fock part is ponlynomial
HF ref. Trancated CI: NP-hard, post Hartree-Fock
part is ponlynomial
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Summary 2: the RDM method is a simpler
(and possibly faster) method

Number of variables are always four.

Minimization of linear functional.
Semidefinite programming solved exactly for the
first time M.N.’s major contribution
polynomial algorithm (cf. Hartree-Fock is NP-hard).
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Our goal: doing chemistry from the first
principle, faster calculation and deeper

understanding

�� ��Our target

ab initio...with theoretically and practically good
approximation
faster method ...mathematically simpler
deeper understanding...electronic structure
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Physical and Chemical meaning of approx.
N-representability condition

Theoretical

P, Q condition: electron and hole exist [Coleman].

G condition: exact for the AGP type Hamiltonian: BCS wave
function / superconductivity. [Coleman].

G condition: exact for high correlation of limit of Hubbard
model [submitted].

Practical

P, Q and G condition: 100 ∼ 130% corr. [Nakata et al], [Mazziotti et al] [Eric et al]

P, Q, G, T1, T2′ condition: 100 ∼ 101% corr. [Zhao et al], [Nakata et al]

P, Q and G condition: dissociation limit (sometimes fails).
[Nakata et al], [Mazziotti], [H. Aggelen et al]
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The ground state energy of atoms and molecules [Nakata et al 2008]

System State N r ∆ EGT1T2 ∆ EGT1T2′ ∆ ECCSD(T) ∆ EHF EFCI
C 3 P 6 20 −0.0004 −0.0001 +0.00016 +0.05202 −37.73653
O 1 D 8 20 −0.0013 −0.0012 +0.00279 +0.10878 −74.78733
Ne 1S 10 20 −0.0002 −0.0001 −0.00005 +0.11645 −128.63881
O+

2
2Πg 15 20 −0.0022 −0.0020 +0.00325 +0.17074 −148.79339

BH 1Σ+ 6 24 −0.0001 −0.0001 +0.00030 +0.07398 −25.18766
CH 2Πr 7 24 −0.0008 −0.0003 +0.00031 +0.07895 −38.33735
NH 1∆ 8 24 −0.0005 −0.0004 +0.00437 +0.11495 −54.96440
HF 1Σ+ 14 24 −0.0003 −0.0003 +0.00032 +0.13834 −100.16031
SiH4

1 A1 18 26 −0.0002 −0.0002 +0.00018 +0.07311 −290.28490
F− 1S 10 26 −0.0003 −0.0003 +0.00067 +0.15427 −99.59712
P 4S 15 26 −0.0001 −0.0000 +0.00003 +0.01908 −340.70802
H2O 1 A1 10 28 −0.0004 −0.0004 +0.00055 +0.14645 −76.15576

GT1T2 : The RDM method (P,Q,G, T1 and T2 conditions)
GT1T2′ : The RDM method (P,Q,G, T1 and T2′ conditions)
CCSD(T) : Coupled cluster singles and doubles with perturbation treatment of triples
HF : Hartree-Fock
FCI : FullCI
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Application to potential energy curve

Dissociation curve of N2 (triple bond) the world first result.
[Nakata-Nakatsuji-Ehara 2002]
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Part 2

Recent results: non-size extensivity
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Size-extensivity and consistency

Size extensivity or consistency is very important
property for a calculation theory.

E(A − −infinity − −A) = E(A) + E(A)?
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Size-extensivity and consistency

Not size consistnt: [Nakata-Nakatsuji-Ehara 2002]
(small deviation),
[Aggelen-Bultinck-Verstichel-VanNeck-Ayers 2009]
(fractional charge!)
Not size extensive: [Nakata-Yasuda 2009]
PRA80,042109(2009).

CH4, N2 non interacting polymers: slightly deviated
primal-dual interior point method is mandatory;
Monteiro-Bruner [Mazziotti 04] is inaccurate.
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Size-extensivity: N2 polymer

N2 N2 N2 · · · N2 non interacting, N-rep.: PQG
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E(M) = −108.71553 + 0.00302M−2. 3 × 10−4 au
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Size-extensivity: CH4 polymer

CH4 CH4 CH4 · · · CH4 non interacting, N-rep.: PQG
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Nither PQG nor PQGT1T2′ are size-extensive
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Size-extensivity: Inaccurate result by
Monteiro-Bruner method

H2O: solved by Monteiro-Bruner method [Mazziotti 2004]: # of iteration req’ed

scale like exponential. Not converged with CO (double-ζ).

NAKATA, Maho (RIKEN, ACCC) Recent progresses in the variational reduced-density-matrix methodSanibel symposium 2010/2/25 29 / 34



Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

Γ
i1i2
j1 j2
= 1

2〈Ψ|a
†
i1

a†
i2

a j2a j1|Ψ〉

Equivalent to the Schrödinger equation
Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]

N-rep: PQGT1T2′ 100 ∼ 101% [Zhao et al 2004]
Polynomial method but takes very long time: H2O double-ζ 1 day�� ��Hopeful and still lot of unknowns!
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How many iterations are needed?

How many iterations are required by

primal-dual interior-point method (PDIPM) or

Monteiro-Bruner method (RRSDP) [Mazziotti 2004]

P, Q, and G P, Q, G, T1, T2
algorithm flops # iterations memory flops # iterations memory
PDIPM r12 r ln ε−1 r8 r12 r3/2 ln ε−1 r8

RRSDP r6 none r4 r9 none r6

Note: when we stop the iteration is a big problem
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How large these SDP are?

# of constraints
r constraints block

24 15018 2520x2, 792x4, 288x1,220x2
26 20709 3211x2, 1014x4, 338x1, 286x2

Elapsed time using Itanium 2 (1.3GHz) 1 node 4 processors.
System, State, Basis N-rep. r Time # of nodes
SiH4, 1 A1, STO-6G PQGT1T2 26 5.1 days 16
H2O, 1 A1, double-ζ PQG 28 2.2 hours 8
H2O, 1 A1, double-ζ PQGT1T2 28 20 days 8
H2O, 1 A1, double-ζ PQGT1T2′ 28 24 days 8
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Necessity of highly accurate solver

SDP results are usually not accurate; typically 8 digits or so.

When the ground state is degenerated, the SDP becomes
more difficult when approaching to the exact optimal.

WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

double (16 digits) 1 + 0.00000000000000001 ' 1

GMP (60 digits; can be arbitrary)
1 + 0.000000000000000000000000000000000000000000000000000000000001 ' 1

GMP (GNU multiple precision)⇒ necessity of highly
accurate solver, using multiple precision arithmetic
(SDPA-GMP) http://sdpa.indsys.chuo-u.ac.jp/sdpa/
GNU Public License
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SDPA-GMP and Hubbard model
The 1D Hubbard model with high correlation limit
|U/t| → ∞: All states are almost degenerated.

The ground state energies of 1D Hubbard model
PBC, # of sites:4, # of electrons: 4, spin 0

U/t SDPA (16 digits) SDPA-GMP (60 digits) fullCI
10000.0 0 −1.1999998800000251 × 10−3 −1.199999880 × 10−3

1000.0 −1.2 × 10−2 −1.1999880002507934 × 10−2 −1.1999880002 × 10−2

100.0 −1.1991 × 10−1 −1.1988025013717993 × 10−1 −1.19880248946 × 10−1

10.0 −1.1000 −1.0999400441222934 −1.099877772750
1.0 −3.3417 −3.3416748070259956 −3.340847617248

PBC, # of sites:6, # of electrons: 6, spin 0
U/t SDPA (16 digits) SDPA-GMP (60 digits) fullCI

10000.0 0 −1.7249951195749525 × 10−3 −1.721110121 × 10−3

1000.0 −1 × 10−2 −1.7255360310431304 × 10−2 −1.7211034713 × 10−2

100.0 −1.730 × 10−1 −1.7302157140594339 × 10−1 −1.72043338097 × 10−1

10.0 −1.6954 −1.6953843276854447 −1.664362733287
1.0 −6.6012 −6.6012042217806286 −6.601158293375
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