Recent progresses in the variational reduced-density-matrix method

中田真秀 (NAKATA, Maho)

maho@riken.jp

http://accc.riken.jp/maho/

理化学研究所 (RIKEN), Advanced Center for Computing and Communication

The 50th Sanibel Symposium (February 24 - March 2, 2010)
Collaborators current and past

- 福田光浩 (Fukuda Mituhiro)
- 安田耕二 (Yasuda Koji)
- Bastiaan J. Braams
- Jerome K. Percus
- 藤澤克樹 (Fujisawa Katsuki)
- 山下真 (Yamashita Makoto)
- Michael Overton
- Zhengji Zhao
- 中田和秀 (Nakata Kazuhide)
- 江原正博 (Ehara Masahiro)
- 中辻博 (Nakatsuji Hiroshi)
Overview

- Introduction of the RDM method.
- Recent results.
- Some open problems.
Introduction of the RDM method.
What is the RDM method in short?

The RDM method: 2-RDM as basic variable

Equivalent to the Schrödinger equation

Ground state energy: Minimize directly!
What is the RDM method in short?

The RDM method: 2-RDM as basic variable
What is the RDM method in short?

The RDM method: 2-RDM as basic variable

\[\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1} | \Psi \rangle \]

Equivalent to the Schrödinger equation

Ground state energy: Minimize directly!

N-representability condition; the only one approximation

NAKATA, Maho (RIKEN, ACCC)
What is the RDM method in short?

The RDM method: 2-RDM as basic variable

\[
\Gamma_{i_1i_2}^{j_1j_2} = \frac{1}{2} \langle \Psi \mid a_{i_1}^\dagger a_{i_2}^\dagger a_{j_2} a_{j_1} \mid \Psi \rangle
\]

Equivalent to the Schrödinger equation
What is the RDM method in short?

The RDM method: 2-RDM as basic variable

\[\Gamma_{i_1 i_2 j_1 j_2} = \frac{1}{2} \langle \Psi | a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1} | \Psi \rangle \]

Equivalent to the Schrödinger equation

Ground state energy: Minimize directly!
What is the RDM method in short?

The RDM method: 2-RDM as basic variable

\[\Gamma_{i_1i_2}^{j_1j_2} = \frac{1}{2} \langle \Psi | a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1} | \Psi \rangle \]

Equivalent to the Schrödinger equation

Ground state energy: Minimize directly!

\(N \)-representability condition; the only one approximation
Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- *ab initio*...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure
Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- *ab initio*...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure
The ground state and energy calculation

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]
The ground state and energy calculation

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

\[H = \sum_{ij} v_{ij} a_i^\dagger a_j + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{i_1 i_2 j_1 j_2} a_{i_1}^\dagger a_{i_2}^\dagger a_{j_2} a_{j_1} \]
The ground state and energy calculation

\[H = \sum_{ij} v_{ij} a_i^\dagger a_j + \frac{1}{2} \sum_{i_1i_2j_1j_2} w_{i_1i_2} a_{i_1}^\dagger a_{i_2}^\dagger a_{j_2} a_{j_1} \]

The ground state energy becomes...

\[E_g = \min \langle \Psi | H | \Psi \rangle \]

\[= \min \sum_{ij} v_{ij} \langle \Psi | a_i^\dagger a_j | \Psi \rangle + \frac{1}{2} \sum_{i_1i_2j_1j_2} w_{i_1i_2} \langle \Psi | a_{i_1}^\dagger a_{i_2}^\dagger a_{j_2} a_{j_1} | \Psi \rangle \]

\[= \min \{ \sum_{ij} v_{ij} \gamma_{ij} + \sum_{i_1i_2j_1j_2} w_{i_1i_2} \Gamma_{i_1i_2} \} \]
The ground state and energy calculation

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

\[
H = \sum_{ij} v_{ij} a_i^\dagger a_j + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{i_1 i_2 j_1 j_2} a_{i_1}^\dagger a_{i_2}^\dagger a_{j_2} a_{j_1}
\]

The ground state energy becomes...

\[
E_g = \min \langle \Psi | H | \Psi \rangle
\]

\[
= \min \sum_{ij} v_{ij} \langle \Psi | a_i^\dagger a_j | \Psi \rangle + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{i_1 i_2 j_1 j_2} \langle \Psi | a_{i_1}^\dagger a_{i_2}^\dagger a_{j_2} a_{j_1} | \Psi \rangle
\]

\[
= \min \left\{ \sum_{ij} v_{ij} \gamma^i_j + \sum_{i_1 i_2 j_1 j_2} w_{i_1 i_2 j_1 j_2} \Gamma_{j_1 j_2}^{i_1 i_2} \right\}
\]

Definition of 1, 2-RDMs

\[
\Gamma_{j_1 j_2}^{i_1 i_2} = \frac{1}{2} \langle \Psi | a_{i_1}^\dagger a_{i_2}^\dagger a_{j_2} a_{j_1} | \Psi \rangle, \quad \gamma^i_j = \langle \Psi | a_i^\dagger a_j | \Psi \rangle.
\]
N-representability condition

\[E = \min_P \sum_{ij} v_{ij} + \sum_{i_1j_1j_2} w_{i_1j_1i_2j_2} \]

should satisfy N-representability condition:

\[(120_2) \leq (123_N) \]

\[(1j_1) \leq (123_N) \]
N-representability condition

[Mayers 1955], [Tredgold 1957]: *Far lower* than the exact one
N-representability condition

[Mayers 1955], [Tredgold 1957]: Far lower than the exact one

N-representability condition [Coleman 1963]

$$E_g = \min_{\rho} \left\{ \sum_{ij} v_{ij} \gamma_{ij} + \sum_{i_1i_2j_1j_2} w_{i_1i_2} \Gamma_{j_1j_2} \right\}$$

$\gamma, \Gamma \in \mathcal{P}$ should satisfy N-representability condition:

$$\Gamma(12|1'2') \rightarrow \Psi(123 \cdots N)$$

$$\gamma(1|1') \rightarrow \Psi(123 \cdots N).$$

Encodes two-body effects completely. Very compact.
Approximate N-representability condition

Approximation (necessary) condition: where Physics and Chemistry are
Approximate N-representability condition

Approximation (necessary) condition: where Physics and Chemistry are

- P, Q-condition, ensemble 1-RDM condition [Coleman 1963]
Approximate N-representability condition

Approximation (necessary) condition: where Physics and Chemistry are

- P, Q-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
Approximate N-representability condition

Approximation (necessary) condition: where Physics and Chemistry are

- P, Q-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])
Approximate N-representability condition

Approximation (necessary) condition: where Physics and Chemistry are

- P, Q-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])
- $T_1, T_2, T_2', (\bar{T}2)$-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]
Approximate N-representability condition

Approximation (necessary) condition: where Physics and Chemistry are

- P, Q-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])
- $T1, T2, T2', (T2)$-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al. 2007] [Mazziotti 2006, 2007]
- Davidson’s inequality [Davidson 1969][Ayers et al. 2006]
Approximate N-representability condition

Approximation (necessary) condition: where Physics and Chemistry are

- P, Q-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])
- $T_1, T_2, T_2', (\tilde{T}_2)$-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]
- Davidson’s inequality [Davidson 1969][Ayers et al. 2006]
Approximate N-representability condition

N-representable region

PQG

a N-rep. condition

PQGT1T2'

a N-rep. condition
Summary 1: the RDM method is an \textit{ab initio} method
Summary 1: the RDM method is an \textit{ab initio} method

- Can evaluate total energy exactly via 1 and 2-RDM
Summary 1: the RDM method is an *ab initio* method

- Can evaluate total energy exactly via 1 and 2-RDM
- Only one approximation is N-representability condition (aka theory of everything)
Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- *ab initio*...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure
Mathematically simpler:
number of variables are always four
Mathematically simpler: number of variables are always four

<table>
<thead>
<tr>
<th>Method</th>
<th># of variable (discretized)</th>
<th>Exact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$N, (r!)$</td>
<td>Yes</td>
</tr>
<tr>
<td>$\Gamma(12</td>
<td>1'2')$</td>
<td>$4, (r^4)$</td>
</tr>
</tbody>
</table>
Mathematically simpler: number of variables are always four

<table>
<thead>
<tr>
<th>Method</th>
<th># of variable (discritized)</th>
<th>Exact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$N, (r!)$</td>
<td>Yes</td>
</tr>
<tr>
<td>$\Gamma(12</td>
<td>1'2')$</td>
<td>$4, (r^4)$</td>
</tr>
</tbody>
</table>

Do not depend on the size of the system
Mathematically simpler:
number of variables are always four

<table>
<thead>
<tr>
<th>Method</th>
<th># of variable (discritized)</th>
<th>Exact?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ψ</td>
<td>$N, (r!)$</td>
<td>Yes</td>
</tr>
<tr>
<td>$\Gamma(12</td>
<td>1'2')$</td>
<td>$4, (r^4)$</td>
</tr>
</tbody>
</table>

Do not depend on the size of the system
Equivalent to Schrödinger eq. (ground state)
Mathematically simpler: minimization of linear functional

\[E = \text{Min} \quad 2P \quad \text{Tr} H \quad P = f \]

Approx. \(N \)-rep.condition

NAKATA, Maho (RIKEN, ACCC) Recent progresses in the variational reduced-deg Sanibel symposium 2010/2/25
Mathematically simpler:
minimization of linear functional

\[E_g = \min_{\Gamma \in \mathcal{P}} \text{Tr} \, H \Gamma \]

\[\mathcal{P} = \{ \Gamma : \text{Approx. } N\text{-rep.condition}\} \]
PSD type N-representability conditions

P, Q, G, T_1, T_2-matrix are all positive semidefinite

$U^\dagger U = \begin{pmatrix} 1 & 0 & 2 & \vdots & 0 \\ 0 & 1 & 0 & \vdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$

First application to Be atom

[Garrod et al 1975, 1976]

Calculation methods are not very well studied...
PSD type N-representability conditions

$P, Q, G, T1, T2$-matrix are all positive semidefinite \leftrightarrow eigenvalues $\lambda_i \geq 0$

$$U^\dagger \Gamma U = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ & & \lambda_n \end{bmatrix} \geq 0$$

First application to Be atom
[Garrod et al 1975, 1976]

Calculation methods are not very well studied...
Realization of the RDM method for atoms and molecules

$E = \min \sum \tau H \tau P = f$: Approx.

Semidifinite programming

We solved exactly for the first time!

Small enough "primal dual gap, feasibility" values show that total energies etc are MATHEMATICALLY correct
Realization of the RDM method for atoms and molecules

\[E_g = \min_{\Gamma \in \mathcal{P}} \text{Tr} H \Gamma \]

\[\mathcal{P} = \{ \Gamma : \text{Approx. } N\text{-rep.condition} \} \]
Realization of the RDM method for atoms and molecules

\[E_g = \min_{\Gamma \in \mathcal{P}} \text{Tr} H \Gamma \]
\(\mathcal{P} = \{ \Gamma : \text{Approx. } N\text{-rep.condition} \} \)

[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved *exactly* for the first time!
Realization of the RDM method for atoms and molecules

\[E_g = \min_{\Gamma \in \mathcal{P}} \mathrm{Tr} H \Gamma \]
\[\mathcal{P} = \{ \Gamma : \text{Approx. } N\text{-rep.condition} \} \]

[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved exactly for the first time!

Small enough “primal dual gap, feasibility” values show that total energies etc are MATHEMATICALLY correct
Mathematically simpler: polynomial algorithm
Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- N-representability conditions: $P, Q, G, T1, T2'$ polynomial
Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- N-representability conditions: P, Q, G, T_1, T_2' polynomial
- Hartree-Fock: NP-hard (not $O(N^4)!$)
Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- \(N \)-representability conditions: \(P, Q, G, T1, T2' \) polynomial
- Hartree-Fock: \(\text{NP-hard} \) (not \(O(N^4)! \))
- HF ref. MP2, Coupled cluster: \(\text{NP-hard} \), post Hartree-Fock part is polynomial
Mathematically simpler: polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm

- \(N\)-representability conditions: \(P, Q, G, T1, T2'\) polynomial

- Hartree-Fock: \(\text{NP-hard (not } O(N^4)!\) \)

- HF ref. MP2, Coupled cluster: \(\text{NP-hard, post}\) Hartree-Fock part is polynomial

- HF ref. Truncated CI: \(\text{NP-hard, post}\) Hartree-Fock part is polynomial
Summary 2: the RDM method is a simpler (and possibly faster) method
Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.
Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.
- Minimization of linear functional.
Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.
- Minimization of linear functional.
- Semidefinite programming solved exactly for the first time M.N.’s major contribution
Summary 2: the RDM method is a simpler (and possibly faster) method

- Number of variables are always four.
- Minimization of linear functional.
- Semidefinite programming solved exactly for the first time M.N.’s major contribution
- Polynomial algorithm (cf. Hartree-Fock is NP-hard).
Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- *ab initio*...with theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure
Physical and Chemical meaning of approx. N-representability condition

Theoretical
Physical and Chemical meaning of approx. N-representability condition

Theoretical

- P, Q condition: electron and hole exist [Coleman].

P, Q and G condition: dissociation limit (sometimes fails).

[NAKATA, Maho (RIKEN, ACCC)]

Recent progresses in the variational reduced-density-matrix method

Sanibel symposium 2010/2/25

21 / 34
Physical and Chemical meaning of approx. N-representability condition

Theoretical

- P, Q condition: electron and hole exist [Coleman].
- G condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
Physical and Chemical meaning of approx. \(N \)-representability condition

Theoretical

- \(P, Q \) condition: electron and hole exist [Coleman].
- \(G \) condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- \(G \) condition: exact for high correlation of limit of Hubbard model [submitted].

Practical
Theoretical

- P, Q condition: electron and hole exist [Coleman].

- G condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].

- G condition: exact for high correlation of limit of Hubbard model [submitted].

Practical

- P, Q and G condition: $100 \sim 130\%$ corr. [Nakata et al], [Mazziotti et al] [Eric et al]
Physical and Chemical meaning of approx. \(N\)-representability condition

Theoretical

- **\(P, Q\)** condition: electron and hole exist [Coleman].
- **\(G\)** condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- **\(G\)** condition: exact for high correlation of limit of Hubbard model [submitted].

Practical

- **\(P, Q\)** and **\(G\)** condition: \(100 \sim 130\%\) corr. [Nakata et al], [Mazziotti et al] [Eric et al]
- **\(P, Q, G, T1, T2'\)** condition: \(100 \sim 101\%\) corr. [Zhao et al], [Nakata et al]
Physical and Chemical meaning of approx. N-representability condition

Theoretical

- P, Q condition: electron and hole exist [Coleman].
- G condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- G condition: exact for high correlation of limit of Hubbard model [submitted].

Practical

- P, Q and G condition: $100 \sim 130\%$ corr. [Nakata et al], [Mazziotti et al] [Eric et al]
- $P, Q, G, T1, T2'$ condition: $100 \sim 101\%$ corr. [Zhao et al], [Nakata et al]
- P, Q and G condition: dissociation limit (sometimes fails).
 [Nakata et al], [Mazziotti], [H. Aggelen et al]
The ground state energy of atoms and molecules [Nakata et al 2008]

<table>
<thead>
<tr>
<th>System</th>
<th>State</th>
<th>N</th>
<th>r</th>
<th>ΔE_{GT1T2}</th>
<th>$\Delta E_{GT1T2'}$</th>
<th>$\Delta E_{CCSD(T)}$</th>
<th>ΔE_{HF}</th>
<th>E_{FCI}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3P</td>
<td>6 20</td>
<td></td>
<td>-0.0004</td>
<td>-0.0001</td>
<td>+0.00016</td>
<td>+0.05202</td>
<td>-37.73653</td>
</tr>
<tr>
<td>O</td>
<td>1D</td>
<td>8 20</td>
<td></td>
<td>-0.0013</td>
<td>-0.0012</td>
<td>+0.00279</td>
<td>+0.10878</td>
<td>-74.78733</td>
</tr>
<tr>
<td>Ne</td>
<td>1S</td>
<td>10 20</td>
<td></td>
<td>-0.0002</td>
<td>-0.0001</td>
<td>-0.00005</td>
<td>+0.11645</td>
<td>-128.63881</td>
</tr>
<tr>
<td>O$^+$</td>
<td>$^2\Pi_g$</td>
<td>15 20</td>
<td></td>
<td>-0.0022</td>
<td>-0.0020</td>
<td>+0.00325</td>
<td>+0.17074</td>
<td>-148.79339</td>
</tr>
<tr>
<td>BH</td>
<td>$^1\Sigma^+$</td>
<td>6 24</td>
<td></td>
<td>-0.0001</td>
<td>-0.0001</td>
<td>+0.00030</td>
<td>+0.07398</td>
<td>-25.18766</td>
</tr>
<tr>
<td>CH</td>
<td>$^2\Pi_r$</td>
<td>7 24</td>
<td></td>
<td>-0.0008</td>
<td>-0.0003</td>
<td>+0.00031</td>
<td>+0.07895</td>
<td>-38.33735</td>
</tr>
<tr>
<td>NH</td>
<td>$^1\Delta$</td>
<td>8 24</td>
<td></td>
<td>-0.0005</td>
<td>-0.0004</td>
<td>+0.00437</td>
<td>+0.11495</td>
<td>-54.96440</td>
</tr>
<tr>
<td>HF</td>
<td>$^1\Sigma^+$</td>
<td>14 24</td>
<td></td>
<td>-0.0003</td>
<td>-0.0003</td>
<td>+0.00032</td>
<td>+0.13834</td>
<td>-100.16031</td>
</tr>
<tr>
<td>SiH$_4$</td>
<td>1A_1</td>
<td>18 26</td>
<td></td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>+0.00018</td>
<td>+0.07311</td>
<td>-290.28490</td>
</tr>
<tr>
<td>F$^-$</td>
<td>1S</td>
<td>10 26</td>
<td></td>
<td>-0.0003</td>
<td>-0.0003</td>
<td>+0.00067</td>
<td>+0.15427</td>
<td>-99.59712</td>
</tr>
<tr>
<td>P</td>
<td>4S</td>
<td>15 26</td>
<td></td>
<td>-0.0001</td>
<td>-0.0000</td>
<td>+0.00003</td>
<td>+0.01908</td>
<td>-340.70802</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>1A_1</td>
<td>10 28</td>
<td></td>
<td>-0.0004</td>
<td>-0.0004</td>
<td>+0.00055</td>
<td>+0.14645</td>
<td>-76.15576</td>
</tr>
</tbody>
</table>

$GT1T2$: The RDM method ($P, Q, G, T1$ and $T2$ conditions)

$GT1T2'$: The RDM method ($P, Q, G, T1$ and $T2'$ conditions)

CCSD(T) : Coupled cluster singles and doubles with perturbation treatment of triples

HF : Hartree-Fock

FCI : FullCI
Application to potential energy curve

- Dissociation curve of N_2 (triple bond) the world first result. [Nakata-Nakatsuji-Ehara 2002]

![Potential curve for N2 (STO-6G)](image)
Recent results: non-size extensivity
Size extensivity or consistency is very important property for a calculation theory.

\[E(A - \text{ infinity} - A) = E(A) + E(A)? \]
Size-extensivity and consistency

CH$_4$, N$_2$ non interacting polymers: slightly deviated

primal-dual interior point method is mandatory; Monteiro-Bruner [Mazziotti 04] is inaccurate.
Not size consistent: [Nakata-Nakatsuji-Ehara 2002] (small deviation),
[Aggelen-Bultinck-Verstichel-VanNeck-Ayers 2009] (fractional charge!)

- CH_4, N_2 non-interacting polymers: slightly deviated
- Primal-dual interior point method is mandatory;
 Monteiro-Bruner [Mazziotti 04] is inaccurate.
Size-extensivity: N_2 polymer

$N_2 N_2 N_2 \cdots N_2$ non interacting, N-rep.: PQG

\[E(M) = -108.71553 + 0.00302M^{-2}. \ 3 \times 10^{-4} \text{ au} \]
Size-extensivity: CH₄ polymer

CH₄ CH₄ CH₄ ⋯ CH₄ non interacting, \(N \)-rep.: \(PQG \)

Neither \(PQG \) nor \(PQGT1T2' \) are size-extensive
Size-extensivity: Inaccurate result by Monteiro-Bruner method

H_2O: solved by Monteiro-Bruner method [Mazziotti 2004]: # of iteration req’ed scale like exponential. Not converged with CO (double-ζ).
The RDM method: 2-RDM as basic variable

Equivalent to the Schrödinger equation

Ground state: minimize directly via semidef. prog.!

[Nakata et al 2001]

N-rep: PQGT

[Zhao et al 2004]

Polynomial method but takes very long time: H2O double...

Hopeful and still lot of unknowns!

NAKATA, Maho (RIKEN, ACCC) Recent progresses in the variational reduced-de Sanibel symposium 2010/2/25 30 / 34
Summary: the RDM method in short

The RDM method: 2-RDM as basic variable
Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

\[
\Gamma_{i_1i_2}^{j_1j_2} = \frac{1}{2} \langle \Psi | a^\dagger_{i_1} a^\dagger_{i_2} a_{j_2} a_{j_1} | \Psi \rangle
\]
The RDM method: 2-RDM as basic variable

\[\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1} | \Psi \rangle \]

Equivalent to the Schrödinger equation
The RDM method: 2-RDM as basic variable

\[
\Gamma^{i_1 i_2}_{j_1 j_2} = \frac{1}{2} \langle \Psi | a^\dagger_{i_1} a^\dagger_{i_2} a_{j_2} a_{j_1} | \Psi \rangle
\]

Equivalent to the Schrödinger equation

Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]
The RDM method: 2-RDM as basic variable

\[\Gamma_{i_1i_2}^{j_1j_2} = \frac{1}{2} \langle \Psi | a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1} | \Psi \rangle \]

Equivalent to the Schrödinger equation

Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]

\(N \)-rep: \(PQGT1T2' \) \(100 \sim 101\% \) [Zhao et al 2004]
The RDM method: 2-RDM as basic variable

\[\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^\dagger_{i_1} a^\dagger_{i_2} a_{j_2} a_{j_1} | \Psi \rangle \]

Equivalent to the Schrödinger equation

Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]

\(N \)-rep: \(PQGT1T2' \) 100 ~ 101% [Zhao et al 2004]

Polynomial method but takes very long time: H2O double-\(\zeta \) 1 day
Summary: the RDM method in short

The RDM method: 2-RDM as basic variable

\[
\Gamma^{i_1 i_2}_{j_1 j_2} = \frac{1}{2} \langle \Psi | a^\dagger_{i_1} a^\dagger_{i_2} a_{j_2} a_{j_1} | \Psi \rangle
\]

Equivalent to the Schrödinger equation

Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]

\(N \)-rep: \(PQGT1T2' \) 100 ~ 101\% [Zhao et al 2004]

Polynomial method but takes very long time: H2O double-\(\zeta \) 1 day

Hopeful and still lot of unknowns!
How many iterations are needed?

How many iterations are required by

- primal-dual interior-point method (PDIPM) or
- Monteiro-Bruner method (RRSDP) [Mazziotti 2004]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Flops P, Q, G</th>
<th># Iterations $P, Q, G, T1, T2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDIPM</td>
<td>r^{12}</td>
<td>$r \ln \varepsilon^{-1}$</td>
</tr>
<tr>
<td></td>
<td>r^{6}</td>
<td>r^8</td>
</tr>
<tr>
<td>RRSDP</td>
<td>r^6</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>r^4</td>
<td>$r^{8/3}$</td>
</tr>
</tbody>
</table>

Note: when we stop the iteration is a big problem
How large these SDP are?

<table>
<thead>
<tr>
<th>r</th>
<th>constraints</th>
<th>block</th>
<th>System, State, Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>15018</td>
<td>2520x2, 792x4, 288x1, 220x2</td>
<td>SiH$_4$, 1A_1, STO-6G, $PQGT1T2$</td>
</tr>
<tr>
<td>26</td>
<td>20709</td>
<td>3211x2, 1014x4, 338x1, 286x2</td>
<td>H$_2$O, 1A_1, double-ζ, PQG</td>
</tr>
</tbody>
</table>

Elapsed time using Itanium 2 (1.3GHz) 1 node 4 processors.

<table>
<thead>
<tr>
<th>System, State, Basis</th>
<th>N-rep.</th>
<th>r</th>
<th>Time</th>
<th># of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiH$_4$, 1A_1, STO-6G</td>
<td>$PQGT1T2$</td>
<td>26</td>
<td>5.1 days</td>
<td>16</td>
</tr>
<tr>
<td>H$_2$O, 1A_1, double-ζ</td>
<td>PQG</td>
<td>28</td>
<td>2.2 hours</td>
<td>8</td>
</tr>
<tr>
<td>H$_2$O, 1A_1, double-ζ</td>
<td>$PQGT1T2$</td>
<td>28</td>
<td>20 days</td>
<td>8</td>
</tr>
<tr>
<td>H$_2$O, 1A_1, double-ζ</td>
<td>$PQGT1T2'$</td>
<td>28</td>
<td>24 days</td>
<td>8</td>
</tr>
</tbody>
</table>
Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- **WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!**
Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- **WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!**
- `double (16 digits) 1 + 0.00000000000000001 ≈ 1`
Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.

WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

- double (16 digits) \(1 + 0.000000000000001 \approx 1\)
- GMP (60 digits; can be arbitrary) \(1 + 0.001 \approx 1\)
Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.

WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

- double (16 digits) \(1 + 0.0000000000000001 \approx 1 \)
- GMP (60 digits; can be arbitrary)
 \[1 + 0.0001 \approx 1 \]
- GMP (GNU multiple precision)

GMP (GNU multiple precision)
Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- **WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!**

- double (16 digits) \(1 + 0.0000000000000001 \approx 1 \)
- GMP (60 digits; can be arbitrary)
 \[1 + 0.0000000000000001 \approx 1 \]
- GMP (GNU multiple precision) \(\Rightarrow \) necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP) http://sdpa.indsys.chuo-u.ac.jp/sdpa/ GNU Public License
The 1D Hubbard model with high correlation limit $|U/t| \to \infty$: All states are almost degenerated.

The ground state energies of 1D Hubbard model

<table>
<thead>
<tr>
<th>U/t</th>
<th>SDPA (16 digits)</th>
<th>SDPA-GMP (60 digits)</th>
<th>fullCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000.0</td>
<td>0</td>
<td>$-1.1999998800000251 \times 10^{-3}$</td>
<td>$-1.1999998800 \times 10^{-3}$</td>
</tr>
<tr>
<td>1000.0</td>
<td>-1.2×10^{-2}</td>
<td>$-1.1999880002507934 \times 10^{-2}$</td>
<td>$-1.1999880002 \times 10^{-2}$</td>
</tr>
<tr>
<td>100.0</td>
<td>-1.1991×10^{-1}</td>
<td>$-1.1988025013717993 \times 10^{-1}$</td>
<td>$-1.19880248946 \times 10^{-1}$</td>
</tr>
<tr>
<td>10.0</td>
<td>-1.1000</td>
<td>-1.0999400441222934</td>
<td>-1.099877772750</td>
</tr>
<tr>
<td>1.0</td>
<td>-3.3417</td>
<td>-3.3416748070259956</td>
<td>-3.340847617248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U/t</th>
<th>SDPA (16 digits)</th>
<th>SDPA-GMP (60 digits)</th>
<th>fullCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000.0</td>
<td>0</td>
<td>$-1.7249951195749525 \times 10^{-3}$</td>
<td>$-1.721110121 \times 10^{-3}$</td>
</tr>
<tr>
<td>1000.0</td>
<td>-1×10^{-2}</td>
<td>$-1.7255360310431304 \times 10^{-2}$</td>
<td>$-1.7211034713 \times 10^{-2}$</td>
</tr>
<tr>
<td>100.0</td>
<td>-1.730×10^{-1}</td>
<td>$-1.7302157140594339 \times 10^{-1}$</td>
<td>$-1.72043338097 \times 10^{-1}$</td>
</tr>
<tr>
<td>10.0</td>
<td>-1.6954</td>
<td>-1.6953843276854447</td>
<td>-1.664362733287</td>
</tr>
<tr>
<td>1.0</td>
<td>-6.6012</td>
<td>-6.6012042217806286</td>
<td>-6.601158293375</td>
</tr>
</tbody>
</table>