Recent progresses in the variational reduced-density-matrix method

中田真秀(NAKATA, Maho) maho@riken.jp

http://accc.riken.jp/maho/

理化学研究所 (RIKEN), Advanced Center for Computing and Communication

The 50th Sanibel Symposium (February 24 - March 2, 2010)

Collaborators current and past

- 福田光浩 (Fukuda Mituhiro)
- 安田耕二 (Yasuda Koji)
- Bastiaan J. Braams
- Jerome K. Percus
- 藤澤克樹 (Fujisawa Katsuki)
- 山下真 (Yamashita Makoto)

- Michael Overton
- Zhengji Zhao
- 中田和秀 (Nakata Kazuhide)
- 江原正博 (Ehara Masahiro)
 - ▶ 中辻博 (Nakatsuji Hiroshi)

- Introduction of the RDM method.
- Recent results.
- Some open problems.

Introduction of the RDM method.

The RDM method: 2-RDM as basic variable

The RDM method: 2-RDM as basic variable

 $\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$

The RDM method: 2-RDM as basic variable

 $\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$

Equivalent to the Schrödinger equation

The RDM method: 2-RDM as basic variable

 $\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$

Equivalent to the Schrödinger equation Ground state energy: Minimize directly!

The RDM method: 2-RDM as basic variable

 $\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$

Equivalent to the Schrödinger equation Ground state energy: Minimize directly! *N*-representability condition; the only one approximation Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- ab initio...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- *ab initio...*theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

$$H = \sum_{ij} v_j^i a_i^{\dagger} a_j + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1}$$

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

$$H = \sum_{ij} v_j^i a_i^{\dagger} a_j + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1}$$

The ground state energy becomes...

$$E_g = \min \langle \Psi | H | \Psi \rangle$$

=
$$\min \sum_{ij} v_j^i \langle \Psi | a_i^{\dagger} a_j | \Psi \rangle + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} \langle \Psi | a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1} | \Psi \rangle$$

=
$$\min \{ \sum_{ij} v_j^i \gamma_j^i + \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} \Gamma_{j_1 j_2}^{i_1 i_2} \}$$

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Rosina 1968]

$$H = \sum_{ij} v_j^i a_i^{\dagger} a_j + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1}$$

The ground state energy becomes...

$$E_g = \min \langle \Psi | H | \Psi \rangle$$

=
$$\min \sum_{ij} v_j^i \langle \Psi | a_i^{\dagger} a_j | \Psi \rangle + \frac{1}{2} \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} \langle \Psi | a_{i_1}^{\dagger} a_{i_2}^{\dagger} a_{j_2} a_{j_1} | \Psi \rangle$$

=
$$\min \{ \sum_{ij} v_j^i \gamma_j^i + \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} \Gamma_{j_1 j_2}^{i_1 i_2} \}$$

Definition of 1, 2-RDMs

$$\Gamma^{i_1i_2}_{j_1j_2}=\frac{1}{2}\langle\Psi|a^{\dagger}_{i_1}a^{\dagger}_{i_2}a_{j_2}a_{j_1}|\Psi\rangle, \ \gamma^i_j=\langle\Psi|a^{\dagger}_ia_j|\Psi\rangle.$$

N-representability condition

N-representability condition

[Mayers 1955], [Tredgold 1957]: Far lower than the exact one

N-representability condition

[Mayers 1955], [Tredgold 1957]: *Far lower* than the exact one *N*-representability condition [Coleman 1963]

$$E_g = \min_{\mathcal{P}} \{ \sum_{ij} v_j^i \gamma_j^i + \sum_{i_1 i_2 j_1 j_2} w_{j_1 j_2}^{i_1 i_2} \Gamma_{j_1 j_2}^{i_1 i_2} \}$$

 $\gamma, \Gamma \in \mathcal{P}$ should satisfy *N*-representability condition:

$$\Gamma(12|1'2') \to \Psi(123\cdots N)$$

$$\gamma(1|1') \rightarrow \Psi(123 \cdots N).$$

Encodes two-body effects completely. Very compact.

Approximation (necessary) condition : where Physics and Chemistry are

• P, Q-condition, ensemble 1-RDM condition [Coleman 1963]

- *P*, *Q*-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]

- *P*, *Q*-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])

- *P*, *Q*-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])

- *P*, *Q*-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])
- Davidson's inequality [Davidson 1969][Ayers et al. 2006]

- *P*, *Q*-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod and Percus 1964]
- k-th order approximation [Erdahl, Jin 2000] (aka k-positivity [Mazziotti Erdahl 2001])
- Davidson's inequality [Davidson 1969][Ayers et al. 2006]
- Construction of 2-particle density [Pistol 2004, 2006]

Summary 1: the RDM method is an ab initio method

Summary 1: the RDM method is an ab initio method

Can evaluate total energy exactly via 1 and 2-RDM

Summary 1: the RDM method is an ab initio method

- Can evaluate total energy exactly via 1 and 2-RDM
- only one approximation is N-representability condition (aka theory of everything)

Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- ab initio...theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

Method	# of variable (discritized)	Exact?
Ψ	N, (r !)	Yes
Γ(12 1'2')	$4, (r^4)$	Yes

Method	# of variable (discritized)	Exact?
Ψ	N, (r !)	Yes
Γ(12 1'2')	$4, (r^4)$	Yes

Do not depend on the size of the system

Method	# of variable (discritized)	Exact?
Ψ	N, (r !)	Yes
Γ(12 1'2')	4 , (r ⁴)	Yes

Do not depend on the size of the system Equivalent to Schrödinger eq. (ground state)

Mathematically simpler: minimization of linear functional
Mathematically simpler: minimization of linear functional

$E_{g} = \underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} H\Gamma$ $\mathcal{P} = \{\Gamma : \operatorname{Approx} N \operatorname{-rep.condition}\}$

PSD type *N*-representability conditions

PSD type *N*-representability conditions

P,Q,G,T1,T2-matrix are all positive semidefinite \leftrightarrow eigenvalues $\lambda_i \ge 0$

$$U^{\dagger} \Gamma U = \begin{bmatrix} \lambda_1 & & 0 \\ & \lambda_2 & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix} \ge 0$$

First application to Be atom [Garrod et al 1975, 1976] Calculation methods are not very well studied...

$E_{g} = \underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} H\Gamma$ $\mathcal{P} = \{\Gamma : \text{Approx. } N \text{-rep.condition} \}$

$E_{g} = \underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} H\Gamma$ $\mathcal{P} = \{\Gamma : \operatorname{Approx} N \operatorname{-rep.condition}\}$

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001] [Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved exactly for the first time!

$E_{g} = \underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} H\Gamma$ $\mathcal{P} = \{\Gamma : \text{Approx. } N \text{-rep.condition} \}$

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001] [Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved exactly for the first time!

Small enough "primal dual gap, feasibility" values show that total energies etc are MATHEMATICALLY correct

 Semidefinite programming: prima-dual interior-point method polynomial algorithm

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- *N*-representability conditions: *P*, *Q*, *G*, *T*1, *T*2' polynomial

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- *N*-representability conditions: *P*, *Q*, *G*, *T*1, *T*2' polynomial
- Hartree-Fock: NP-hard (not O(N⁴)!)

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- *N*-representability conditions: *P*, *Q*, *G*, *T*1, *T*2' polynomial
- Hartree-Fock: NP-hard (not O(N⁴)!)
- HF ref. MP2, Coupled cluster: NP-hard, post Hartree-Fock part is ponlynomial

- Semidefinite programming: prima-dual interior-point method polynomial algorithm
- *N*-representability conditions: *P*, *Q*, *G*, *T*1, *T*2' polynomial
- Hartree-Fock: NP-hard (not O(N⁴)!)
- HF ref. MP2, Coupled cluster: NP-hard, post Hartree-Fock part is ponlynomial
- HF ref. Trancated CI: NP-hard, post Hartree-Fock part is ponlynomial

• Number of variables are always four.

- Number of variables are always four.
- Minimization of linear functional.

- Number of variables are always four.
- Minimization of linear functional.
- Semidefinite programming solved exactly for the first time M.N.'s major contribution

- Number of variables are always four.
- Minimization of linear functional.
- Semidefinite programming solved exactly for the first time M.N.'s major contribution
- polynomial algorithm (cf. Hartree-Fock is NP-hard).

Our goal: doing chemistry from the first principle, faster calculation and deeper understanding

Our target

- ab initio...with theoretically and practically good approximation
- faster method ...mathematically simpler
- deeper understanding...electronic structure

Theoretical

Theoretical

• P, Q condition: electron and hole exist [Coleman].

Theoretical

- *P*, *Q* condition: electron and hole exist [Coleman].
- *G* condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].

Theoretical

- P, Q condition: electron and hole exist [Coleman].
- *G* condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- *G* condition: exact for high correlation of limit of Hubbard model [submitted].

Practical

Theoretical

- P, Q condition: electron and hole exist [Coleman].
- *G* condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- *G* condition: exact for high correlation of limit of Hubbard model [submitted].

Practical

• P, Q and G condition: 100 ~ 130% COrr. [Nakata et al], [Mazziotti et al] [Eric et al]

Theoretical

- P, Q condition: electron and hole exist [Coleman].
- *G* condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- *G* condition: exact for high correlation of limit of Hubbard model [submitted].

Practical

- P, Q and G condition: 100 ~ 130% COrr. [Nakata et al], [Mazziotti et al] [Eric et al]
- P, Q, G, T1, T2' condition: 100 ~ 101% Corr. [Zhao et al], [Nakata et al]

Theoretical

- P, Q condition: electron and hole exist [Coleman].
- *G* condition: exact for the AGP type Hamiltonian: BCS wave function / superconductivity. [Coleman].
- *G* condition: exact for high correlation of limit of Hubbard model [submitted].

Practical

- P, Q and G condition: 100 ~ 130% COrr. [Nakata et al], [Mazziotti et al] [Eric et al]
- P, Q, G, T1, T2' condition: $100 \sim 101\%$ corr. [Zhao et al], [Nakata et al]
- *P*, *Q* and *G* condition: dissociation limit (sometimes fails).

[Nakata et al], [Mazziotti], [H. Aggelen et al]

The ground state energy of atoms and molecules [Nakata et al 2008]

System	1 State	N r	ΔE_{GT1T2}	$\Delta E_{GT1T2'}$	$\Delta E_{CCSD(T)} \Delta E_{HF} \qquad E_{FCI}$
С	³ P	6 20	-0.0004	-0.0001	+0.00016 +0.05202 -37.73653
0	^{1}D	8 20	-0.0013	-0.0012	+0.00279 +0.10878 -74.78733
Ne	¹ S	10 20	-0.0002	-0.0001	-0.00005 +0.11645 -128.63881
0,+	$^{2}\Pi_{g}$	15 20	-0.0022	-0.0020	+0.00325 +0.17074 -148.79339
ВĤ	$^{1}\Sigma^{+}$	6 24	-0.0001	-0.0001	+0.00030 +0.07398 -25.18766
CH	$^{2}\Pi_{r}$	7 24	-0.0008	-0.0003	+0.00031 +0.07895 -38.33735
NH	$^{1}\Delta$	8 24	-0.0005	-0.0004	+0.00437 +0.11495 -54.96440
HF	$^{1}\Sigma^{+}$	14 24	-0.0003	-0.0003	+0.00032 +0.13834 -100.16031
SiH₄	${}^{1}A_{1}$	18 26	-0.0002	-0.0002	+0.00018 +0.07311 -290.28490
F-	¹ S	10 26	-0.0003	-0.0003	+0.00067 +0.15427 -99.59712
Р	⁴ S	15 26	-0.0001	-0.0000	+0.00003 +0.01908 -340.70802
H_2O	${}^{1}A_{1}$	10 28	-0.0004	-0.0004	+0.00055 +0.14645 -76.15576

GT1T2	:	The RDM method (P, Q, G, T1 and T2 conditions)
GT1T2'	:	The RDM method ($P, Q, G, T1$ and $T2'$ conditions)
CCSD(T)	:	Coupled cluster singles and doubles with perturbation treatment of triples
HF	:	Hartree-Fock
FCI	:	FullCI

Application to potential energy curve

 Dissociation curve of N₂ (triple bond) the world first result. [Nakata-Nakatsuji-Ehara 2002]

Recent results: non-size extensivity

Size extensivity or consistency is very important property for a calculation theory.

$$E(A - -infinity - -A) = E(A) + E(A)?$$

 Not size consistnt: [Nakata-Nakatsuji-Ehara 2002] (small deviation), [Aggelen-Bultinck-Verstichel-VanNeck-Ayers 2009] (fractional charge!)

- Not size consistnt: [Nakata-Nakatsuji-Ehara 2002] (small deviation), [Aggelen-Bultinck-Verstichel-VanNeck-Ayers 2009] (fractional charge!)
- Not size extensive: [Nakata-Yasuda 2009] PRA80,042109(2009).
 - CH₄, N₂ non interacting polymers: slightly deviated
 - primal-dual interior point method is mandatory; Monteiro-Bruner [Mazziotti 04] is inaccurate.

Size-extensivity: N₂ polymer

 $N_2 N_2 N_2 \cdots N_2$ non interacting, *N*-rep.: *PQG*

$E(M) = -108.71553 + 0.00302M^{-2}$. 3×10^{-4} au

Size-extensivity: CH₄ polymer

CH₄ CH₄ CH₄ ··· CH₄ non interacting, N-rep.: PQG

Nither PQG nor PQGT1T2' are size-extensive

Size-extensivity: Inaccurate result by Monteiro-Bruner method

 H_2O : solved by Monteiro-Bruner method [Mazziotti 2004]: # of iteration req'ed scale like exponential. Not converged with CO (double- ζ).

The RDM method: 2-RDM as basic variable

The RDM method: 2-RDM as basic variable

$$\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$$

The RDM method: 2-RDM as basic variable

$$\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$$

Equivalent to the Schrödinger equation

The RDM method: 2-RDM as basic variable

$$\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$$

Equivalent to the Schrödinger equation Ground state: minimize directly via semidef. prog.! [Nakata et al 2001]

The RDM method: 2-RDM as basic variable

$$\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$$

Equivalent to the Schrödinger equation Ground state: minimize directly via semidef. prog.! [Nakata et al 2001] *N*-rep: *PQGT1T2'* 100 ~ 101% [Zhao et al 2004]

The RDM method: 2-RDM as basic variable

$$\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$$

Equivalent to the Schrödinger equation Ground state: minimize directly via semidef. prog.! [Nakata et al 2001] *N*-rep: *PQGT1T2'* 100 ~ 101% [Zhao et al 2004] Polynomial method but takes very long time: H2O double-ζ 1 day

The RDM method: 2-RDM as basic variable

$$\Gamma^{i_1i_2}_{j_1j_2} = \frac{1}{2} \langle \Psi | a^{\dagger}_{i_1} a^{\dagger}_{i_2} a_{j_2} a_{j_1} | \Psi \rangle$$

Equivalent to the Schrödinger equation Ground state: minimize directly via semidef. prog.! [Nakata et al 2001] *N*-rep: $PQGT1T2' 100 \sim 101\%$ [Zhao et al 2004] Polynomial method but takes very long time: H2O double- ζ 1 day Hopeful and still lot of unknowns!

How many iterations are needed?

How many iterations are required by

- primal-dual interior-point method (PDIPM) or
- Monteiro-Bruner method (RRSDP) [Mazziotti 2004]

	P, Q, and G			P, Q, G, T1, T2		
algorithm	flops	# iterations	memory	flops	# iterations	memory
PDIPM	<i>r</i> ¹²	$r \ln \varepsilon^{-1}$	r^8	r ¹²	$r^{3/2}\lnarepsilon^{-1}$	r^8
RRSDP r^6 none r^4 r^9 none r^6						
Note: when we stop the iteration is a big problem						

How large these SDP are?

# of constraints			
r	constraints	onstraints block	
24	15018	2520x2, 792x4, 288x1,220x2	
26	20709	3211x2, 1014x4, 338x1, 286x2	

Elapsed time using Itanium 2 (1.3GHz) 1 node 4 processors.

System, State, Basis	N-rep.	r	Time	# of nodes
SiH ₄ , ¹ A ₁ , STO-6G	PQGT1T2	26	5.1 days	16
$\mathrm{H}_{2}\mathrm{O},^{1}A_{1},\mathrm{double}$ - ζ	PQG	28	2.2 hours	8
$\mathrm{H}_{2}\mathrm{O},^{1}A_{1},\mathrm{double}$ - ζ	PQGT1T2	28	20 days	8
$\mathrm{H}_{2}\mathrm{O},^{1}A_{1},\mathrm{double}$ - ζ	PQGT1T2'	28	24 days	8

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) **1** + **0.0000000000000000** ~ **1**

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) **1** + **0.0000000000000000** ≃ **1**

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) **1** + **0.0000000000000000** ≃ **1**
- GMP (GNU multiple precision)

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $1 + 0.0000000000000001 \simeq 1$
- GMP (GNU multiple precision) ⇒ necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP) http://sdpa.indsys.chuo-u.ac.jp/sdpa/ GNU Public License

SDPA-GMP and Hubbard model

The 1D Hubbard model with high correlation limit $|U/t| \rightarrow \infty$: All states are almost degenerated.

The ground state energies of 1D Hubbard model

PBC, # of sites:4, #	of electrons: 4, spin 0
----------------------	-------------------------

U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCI		
10000.0	0	$-1.1999998800000251 \times 10^{-3}$	$-1.199999880 \times 10^{-3}$		
1000.0	-1.2×10^{-2}	$-1.1999880002507934 \times 10^{-2}$	$-1.1999880002 \times 10^{-2}$		
100.0	-1.1991×10^{-1}	$-1.1988025013717993 \times 10^{-1}$	$-1.19880248946 \times 10^{-1}$		
10.0	-1.1000	-1.0999400441222934	-1.099877772750		
1.0	-3.3417	-3.3416748070259956	-3.340847617248		
PBC, # of sites:6, # of electrons: 6, spin 0					
U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCI		
10000.0	0	$-1.7249951195749525 \times 10^{-3}$	$-1.721110121 \times 10^{-3}$		
1000.0	-1×10^{-2}	$-1.7255360310431304 \times 10^{-2}$	$-1.7211034713 \times 10^{-2}$		
100.0	-1.730×10^{-1}	$-1.7302157140594339 \times 10^{-1}$	$-1.72043338097 \times 10^{-1}$		
10.0	-1.6954	-1.6953843276854447	-1.664362733287		
1.0	-6.6012	-6.6012042217806286	-6.601158293375		