The Reduced Density Matrix Method： Current status and open problems

中田真秀（NAKATA，Maho）
maho＠riken．jp

理化学研究所（RIKEN），Advanced Center for Computing and Communication

92nd Canadian Chemistry Conference and Exhibition 2009／5／30－6／3

Collaborators (current and past)

- Fukuda Mituhiro
- Bastiaan J. Braams
- Jerome K. Percus
- Fujisawa Katsuki
- Yamashita Makoto
- Michael Overton
- Zhengji Zhao
- Nakata Kazuhide
- Ehara Masahiro
- Nakatsuji Hiroshi

Overview

- Motivation
- Introduction of the RDM method
- Review of results.
- Some open problems (negative results).

Doing Chemistry from the first principle

Doing Chemistry from the first principle

Prediction of chemical reaction, if and only if possible

Doing Chemistry from the first principle

Prediction of chemical reaction, if and only if possible
from the first principle

Doing Chemistry from the first principle

Prediction of chemical reaction, if and only if possible
from the first principle

Motivation: Construct a faster, simpler method for Chemistry.

Candidate: the RDM method

Candidate: the RDM method

The RDM method: 2-RDM as basic variable

Candidate: the RDM method

The RDM method: 2-RDM as basic variable

$\Gamma\left(12 \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$

Basic equation: Schrödinger equation

Basic equation: Schrödinger equation

Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\sum_{A}^{K} \frac{Z_{A} e^{2}}{4 \pi \epsilon_{0} r_{A j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Basic equation: Schrödinger equation

Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\sum_{A}^{K} \frac{Z_{A} e^{2}}{4 \pi \epsilon_{0} r_{A j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Schrödinger equation

Basic equation: Schrödinger equation

Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\sum_{A}^{K} \frac{Z_{A} e^{2}}{4 \pi \epsilon_{0} r_{A j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Schrödinger equation

$$
H \Psi(1,2, \cdots N)=E \Psi(1,2, \cdots N)
$$

Basic equation: Schrödinger equation

Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\sum_{A}^{K} \frac{Z_{A} e^{2}}{4 \pi \epsilon_{0} r_{A j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Schrödinger equation

$$
H \Psi(1,2, \cdots N)=E \Psi(1,2, \cdots N)
$$

Pauli principle

Basic equation: Schrödinger equation

Hamiltonian \boldsymbol{H}

$$
H=\sum_{j=1}^{N}\left(-\frac{\hbar^{2}}{2 m_{e}} \nabla_{j}^{2}-\sum_{A}^{K} \frac{Z_{A} e^{2}}{4 \pi \epsilon_{0} r_{A j}}\right)+\sum_{i>j} \frac{e^{2}}{4 \pi \epsilon_{0} r_{i j}}
$$

Schrödinger equation

$$
H \Psi(1,2, \cdots N)=E \Psi(1,2, \cdots N)
$$

Pauli principle

$$
\Psi(\cdots, i, \cdots, j, \cdots)=-\Psi(\cdots, j, \cdots, i, \cdots)
$$

Solving Schrödinger equation is difficult

We know the basic equation but...

Solving Schrödinger equation is difficult

We know the basic equation but...

The general theory of quantum mechanics is now almost complete. ... the whole of chemistry are thus completely known, and the difficultly is only that the exact application of these laws leads to equations much too complected to be soluble.

He has never think about computational complexity and it's NP-hard :-)
[Dirac 1929] "Quantum Mechanics of Many-Electron Systems."

A simpler quantum mechanical method

A simpler quantum mechanical method

A success story: "The Density Functional Theory"
[Hoheberg-Kohn 1964] [Kohn-Sham 1965][Kohn 1998; Nobel Prize]

Ground state electronic density $\rho(r)$

\Downarrow external potential $\boldsymbol{v}(\boldsymbol{r})$
\Downarrow
Hamiltonian \boldsymbol{H}
\Downarrow
Schrödinger equation
Very difficult functional $\boldsymbol{F}[\rho(r)]$. Practically this is semi-empirical theory.

Preferable methods for chemistry

Preferable methods for chemistry

- From the first principle.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.
- Language: better understanding of chemistry and physics.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.
- Language: better understanding of chemistry and physics.
- Low scaling cost.

Preferable methods for chemistry

- From the first principle.
- Separability or nearsightedness: split a whole system into subsystems.
- Language: better understanding of chemistry and physics.
- Low scaling cost.

> The RDM method!

The RDM method

The RDM method

The second-order reduced density matrix:

[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]

$$
\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}
$$

The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} \mathbf{2}^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$
Can we construct simpler quantum chemical method using $\Gamma\left(\mathbf{1 2 | 1} \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$ as a basic variable?

The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]
$\Gamma\left(12 \mid 1^{\prime} 2^{\prime}\right)=\binom{N}{2} \int \Psi^{*}(123 \cdots N) \Psi\left(1^{\prime} 2^{\prime} 3 \cdots N\right) d \mu_{3 \cdots N}$
Can we construct simpler quantum chemical method using $\Gamma\left(\mathbf{1 2 |} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right)$ as a basic variable?

Comparison

Method	\# of variable (discritized)	Exact?
$\boldsymbol{\Psi}$	$\boldsymbol{N},(\boldsymbol{r}!)$	Yes
$\boldsymbol{\Gamma}\left(\mathbf{1 2 \| \mathbf { 1 } ^ { \prime } \mathbf { 2 } ^ { \prime })}\right.$	$\mathbf{4},\left(\boldsymbol{r}^{\mathbf{4}}\right)$	Yes

Comparison

Method	\# of variable (discritized)	Exact?
$\boldsymbol{\Psi}$	$\boldsymbol{N},(\boldsymbol{r}!)$	Yes
$\boldsymbol{\Gamma}\left(\mathbf{1 2 \| \mathbf { 1 } ^ { \prime } \mathbf { 2 } ^ { \prime })}\right.$	$\mathbf{4},\left(\boldsymbol{r}^{\mathbf{4}}\right)$	Yes

Do not depend on the size of the system

Comparison

Method	\# of variable (discritized)	Exact?
$\boldsymbol{\Psi}$	$\boldsymbol{N},(\boldsymbol{r}!)$	Yes
$\boldsymbol{\Gamma}\left(\mathbf{1 2 \| \mathbf { 1 } ^ { \prime } \mathbf { 2 } ^ { \prime })}\right.$	$\mathbf{4},\left(\boldsymbol{r}^{\mathbf{4}}\right)$	Yes

Do not depend on the size of the system Equivalent to Schrödinger eq. (ground state)

Definition of 1,2-RDM

Definition of 1,2-RDM

The Hamiltonian contains only 1 and 2-particle interaction.

$$
H=\sum_{i j} v_{j}^{i} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}
$$

Definition of 1,2-RDM

The Hamiltonian contains only 1 and 2-particle interaction.

$$
H=\sum_{i j} v_{j}^{i} a_{i}^{\dagger} a_{j}+\frac{1}{2} \sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}
$$

The total energy \boldsymbol{E} becomes,

$$
\begin{aligned}
E & =\sum_{i j} v_{j}^{i}\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle+\frac{1}{2} \sum_{i_{1} i_{j_{1} j_{2}}} w_{j_{1} j_{2}}^{i_{1} i_{2}}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle \\
& =\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}} .
\end{aligned}
$$

Definition of 1,2-RDM

Definition of 1,2-RDM

Here we defined the second-order reduced density matrix $\boldsymbol{\Gamma}_{j_{1} j_{2}}^{i_{1} i_{2}}$ (2-RDM)
$j_{1} j_{2}$

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

Definition of 1,2-RDM

Here we defined the second-order reduced density matrix $\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}(2-R D M)$

$$
\Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}=\frac{1}{2}\langle\Psi| a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} a_{j_{2}} a_{j_{1}}|\Psi\rangle
$$

and the first-order reduced density matrix $\gamma_{j}^{i}(1-\mathrm{RDM})$

$$
\gamma_{j}^{i}=\langle\Psi| a_{i}^{\dagger} a_{j}|\Psi\rangle
$$

The ground state and energy calculation

The ground state and energy calculation

The ground state energy and 2-RDM can be obtained [Rosina 1968]

The ground state and energy calculation

The ground state energy and 2-RDM can be obtained [Rosina 1968]

$$
\begin{aligned}
E_{g} & =\min _{\Psi}\langle\Psi| H|\Psi\rangle \\
& =\min _{\gamma, \Gamma}\left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{i} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}\right\}
\end{aligned}
$$

The ground state and energy calculation

The ground state energy and 2-RDM can be obtained [Rosina 1968]

$$
\begin{aligned}
E_{g} & =\min _{\Psi}\langle\Psi| H|\Psi\rangle \\
& =\min _{\gamma, \Gamma}\left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}\right\}
\end{aligned}
$$

[Mayers 1955], [Tredgold 1957]: Far lower than the exact one

The ground state and energy calculation

The ground state energy and 2-RDM can be obtained [Rosina 1968]

$$
\begin{aligned}
E_{g} & =\min _{\Psi}\langle\Psi| H|\Psi\rangle \\
& =\min _{\gamma, \Gamma}\left\{\sum_{i j} v_{j}^{i} \gamma_{j}^{i}+\sum_{i_{1} i_{2} j_{1} j_{2}} w_{j_{1} j_{2}}^{i_{1} i_{2}} \Gamma_{j_{1} j_{2}}^{i_{1} i_{2}}\right\}
\end{aligned}
$$

[Mayers 1955], [Tredgold 1957]: Far lower than the exact one

$$
\underbrace{N \text {-representability condition }}_{\text {[Coleman 1963] }}
$$

N-representability condition

N-representability condition

N-representability condition [Coleman 1963]
$\Gamma\left(\mathbf{1 2} \mid \mathbf{1}^{\prime} \mathbf{2}^{\prime}\right) \rightarrow \Psi(\mathbf{1 2 3} \cdots N)$ or full Density Matrix $\gamma\left(\mathbf{1} \mathbf{1}^{\prime}\right) \rightarrow \Psi(\mathbf{1 2 3} \cdots N)$ or full Density Matrix

Complete N-representability condition is very difficult

Computational complexity for complete N-representability

- Basically every N-rep. condition is linear constraint.
- Optimization over diagonal N-representable 2-RDM: NP-hard [Deza, Laurent 1997]
- Decision problem "is this 2-RDM N-representable?" QMA-complete, NP-hard [Liu 2007]
- Coleman's algorithm [Beste, et al 2002] [Coleman 2000].

Very difficult and hopeless :-(
[See also "Complexity and Electronic Structure Theory" B.J. Braams 741 PT11 16:40 Monday]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and Chemistry are

Approximate N-representability condition

Approximation (necessary) condition : where Physics and Chemistry are

- $\boldsymbol{P}, \boldsymbol{Q}$-condition, ensemble 1-RDM condition [Coleman 1963]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod et al. 1964]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod et al. 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])

Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod et al. 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])
- T1, T2, T2', ($\overline{\boldsymbol{T}} \mathbf{2}$)-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod et al. 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])
- T1, T2, T2', ($\overline{\mathbf{T}} \mathbf{2}$)-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]
- Davidson's inequality [Davidson 1969][Ayers et al. 2006]

Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

- P, \boldsymbol{Q}-condition, ensemble 1-RDM condition [Coleman 1963]
- G-condition [Garrod et al. 1964]
- \boldsymbol{k}-th order approximation [Erdahl, Jin 2000] (aka \boldsymbol{k}-positivity [Mazziotti Erdahl 2001])
- T1, T2, T2', ($\overline{\mathbf{T}} \mathbf{2}$)-condition [Zhao et al. 2004], [Erdahl 1978] [Braams et al 2007] [Mazziotti 2006, 2007]
- Davidson's inequality [Davidson 1969][Ayers et al. 2006]
- Construction of 2-particle density [Pistol 2004, 2006]

PSD type N-representability conditions

PSD type N-representability conditions

$\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T 1}, \boldsymbol{T 2}$-matrix are all positive semidefinite \leftrightarrow eigenvalues $\lambda_{i} \geq \mathbf{0}$

$$
U^{\dagger} \Gamma U=\left[\begin{array}{llll}
\lambda_{1} & & & 0 \\
& \lambda_{2} & & \\
& & \ddots & \\
0 & & & \lambda_{n}
\end{array}\right] \geq 0
$$

First application to Be atom
[Garrod et al 1975, 1976]
Calculation methods are not very well studied...

Realization of the RDM method for atoms and molecules

Realization of the RDM method for atoms and molecules

$$
\begin{gathered}
\boldsymbol{E}_{\mathbf{g}}=\underset{\boldsymbol{\Gamma} \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} \boldsymbol{H} \boldsymbol{\Gamma} \\
\mathcal{P}=\{\boldsymbol{\Gamma}: \text { Approx. } N \text {-rep.condition }\}
\end{gathered}
$$

Realization of the RDM method for atoms and molecules

$$
\begin{gathered}
E_{\mathrm{g}}=\underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} H \Gamma \\
\mathcal{P}=\{\Gamma: \text { Approx. } N \text {-rep.condition }\}
\end{gathered}
$$

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved exactly for the first time!

Realization of the RDM method for atoms and molecules

$$
\begin{gathered}
\boldsymbol{E}_{\mathrm{g}}=\underset{\Gamma \in \mathcal{P}}{\operatorname{Min}} \operatorname{Tr} \boldsymbol{H} \boldsymbol{\Gamma} \\
\mathcal{P}=\{\boldsymbol{\Gamma}: \text { Approx. } N \text {-rep.condition }\}
\end{gathered}
$$

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming

We solved exactly for the first time!

The ground state energy of atoms and molecules [Nakata et al 2008]

System	State	$\boldsymbol{N} \quad \boldsymbol{r}$	$\Delta \mathrm{E}_{\text {GT1T2 }}$	$\Delta \mathrm{E}_{\text {GT1T2 }}$	$\Delta \mathrm{E}_{\text {CCSD }}(T)$	$\Delta \mathrm{E}_{\text {HF }}$	$\mathrm{E}_{F C I}$
C	${ }^{3} \mathrm{P}$	620	-0.0004	-0.0001	+0.00016	+0.05202	-37.73653
O	${ }^{1} \mathrm{D}$	820	-0.0013	-0.0012	+0.00279	+0.10878	-74.78733
Ne	${ }^{1} S$	1020	-0.0002	-0.0001	-0.00005	+0.11645	-128.63881
O	${ }^{2} \Pi_{g}$	1520	-0.0022	-0.0020	+0.00325	+0.17074	-148.79339
BH	${ }^{1} \Sigma^{+}$	624	-0.0001	-0.0001	+0.00030	+0.07398	-25.18766
CH	${ }^{2} \Pi_{r}$	724	-0.0008	-0.0003	+0.00031	+0.07895	-38.33735
NH	${ }^{1} \Delta$	824	-0.0005	-0.0004	+0.00437	+0.11495	-54.96440
HF	${ }^{1} \Sigma^{+}$	1424	-0.0003	-0.0003	+0.00032	+0.13834	-100.16031
SiH_{4}	${ }^{1} A_{1}$	1826	-0.0002	-0.0002	+0.00018	+0.07311	-290.28490
F^{-}	${ }^{1} S$	1026	-0.0003	-0.0003	+0.00067	+0.15427	-99.59712
P	${ }^{4} S$	1526	-0.0001	-0.0000	+0.00003	+0.01908	-340.70802
$\mathrm{H}_{2} \mathrm{O}$	${ }^{1} A_{1}$	1028	-0.0004	-0.0004	+0.00055	+0.14645	-76.15576

$\boldsymbol{G T 1 T 2}$: \quad The RDM method ($\boldsymbol{P}, \mathbf{Q}, \boldsymbol{G}, \boldsymbol{T 1}$ and $\boldsymbol{T 2}$ conditions)
GT1T2' : The RDM method ($P, Q, G, T 1$ and $T 2^{\prime}$ conditions)
$\operatorname{CCSD}(\mathrm{T})$: Coupled cluster singles and doubles with perturbation treatment of triples
HF : Hartree-Fock
FCl : FullCl

Application to potential energy curve

- Dissociation curve of \mathbf{N}_{2} (triple bond) the world first result. [Nakata-Nakatsuji-Ehara 2002]

Summary of typical results

Summary of typical results

Typical results

N-rep. Correlation energy(\%) dissociation limit
$P Q G \quad 100$ ~ 130\%
PQGT1T2' $\operatorname{CCSD}(\mathrm{T})$
$100 \sim 101 \%$ $100 \sim 101 \%$
([Nakata-Nakatuji-Ehara-Fukuda-Nakata-Fujisawa 2001] [Nakata et al.2002][Zhao et al. 2004][Mazziotti et al. 2002,3,4,5,6,7,8,9][Eric et al 2006][Fukuda et al 2007][Nakata et al 2008])
[See also "Variational Detremination of the Two Particle Reduced Density Matrix", B. Verstichel 1319 PTP Tuesday]

Essentials of [Nakata et al. 2001, 2002] with P, Q, G-condition

JCP 114,8282(2001), JCP 116, 5432(2002).

- Exact minimization was performed for the first time. Since mid of 1990, solvers are developed mathematical programming community. Among them the SDPA the fastest, and exact. Everyone is doing SDP without aware of it :)
- G-condition is mandatory for chemistry: related to AGP wf (corr. ene. 100\%~130\%)
- P, Q conditions are not sufficient (corr. ene. $200 \sim \mathbf{8 0 0 \%}$)
- The 3rd, 4th order approx. are not essential
- In 2000 Erdahl and Jin:"The poor quality of the second-order estimates is consistent with the work of Mihailovic and Rosina..."
- In 2001, Mazziotti and Erdahl: Lipkin model. Table IV: correlation energies are 478-5238\% with $\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}$ conditions (in 2005 silently corrected by Hammond, Mazziotti and Erdahl(?)).

Importance of [Zhao-Braams-Fukuda-Percus-Overton 2004] with

T1, T2-conditions

JCP 120, 2095(2004).

- Formulation of $\boldsymbol{T 1}$ and $\boldsymbol{T 2}$ conditions
- Total energies became comparable to CCSD(T)
- We can do Chemistry with these conditions!!!
- Not a trivial formulation.
- Dual SDP formulation

Lager calculation is possible

- They gave us a hope to realization of the RDM method

How large we can calculate until now?

"size" is how many active orbitals are used

Who	Year	Size	N-rep.	system
Garrod et al.	1976	?	PQG	Be
Erdahl	1979	?	$P Q G$	He_{2}
Nakata et al.	2001	8	PQG	$\mathrm{H}_{3} \mathrm{O}^{+}$
Nakata et al.	2002	8	$P Q G$	$\mathrm{C}_{2}, \mathrm{CO}, \mathrm{N}_{2}$
Zhao et. al	2004	10	PQGT1T2	$\mathrm{H}_{3} \mathrm{O}^{+}$
Mazziotti	2004	14-18	$P Q G$	$\mathrm{N}_{2}, \mathrm{H}_{6}$
Gidofalvi et.al.	2005	14-20(?)	$P Q G$	$\mathrm{N}_{2}, \mathrm{C}_{2}$
Eric et. al	2006	15	$P Q G$	NH_{3}
Hammond et. al	2006	14	PQGT2	Hubbard mod
Fukuda et al.	2007	13	PQGT1T2	$\mathrm{CH}_{3} \mathrm{~N}$
Nakata et al.	2008	14	PQGT1T2'	$\mathrm{H}_{2} \mathrm{O}$
Greenman et al.	2009	8	PQGT2	CAS(Benzene
Greenman et al.	2009	12-24	$P Q G$	CAS(Pentacyn

Open problems

- How many iterations are needed?
- Size consistency or extensively.
- Degeneracy.
- Diagonal representability and excited states.

How many iterations are needed?

How many iterations are required by

- primal-dual interior-point method (PDIPM) or
- Monteiro-Bruner method (RRSDP) [Mazziotti 2004]

	$\boldsymbol{P}, \boldsymbol{Q}$, and \boldsymbol{G}			$\boldsymbol{P}, \boldsymbol{Q}, \boldsymbol{G}, \boldsymbol{T} \mathbf{1}, \boldsymbol{T} \mathbf{2}$		
algorithm	flops	\# iterations	memory	flops	\# iterations	memory
PDIPM	\boldsymbol{r}^{12}	$\boldsymbol{r} \ln \boldsymbol{\varepsilon}^{-1}$	$\boldsymbol{r}^{\mathbf{8}}$	\boldsymbol{r}^{12}	$\boldsymbol{r}^{\mathbf{3 / 2}} \ln \boldsymbol{\varepsilon}^{-1}$	$\boldsymbol{r}^{\mathbf{8}}$
RRSDP	$\boldsymbol{r}^{\mathbf{6}}$	none	\boldsymbol{r}^{4}	\boldsymbol{r}^{9}	none	$\boldsymbol{r}^{\mathbf{6}}$

Note: when we stop the iteration is a big problem

Lacking size consistency and/or extensively

- \boldsymbol{G}-condition servers as a necessary condition to size consistent and/or extensively [Nakata et al. 2002] $\lim _{\left|1-1^{\prime}\right| \rightarrow \infty} F\left(1 \mid 1^{\prime}\right)=\left\langle n(1) n\left(1^{\prime}\right)\right\rangle-\langle n(1)\rangle\left\langle n\left(1^{\prime}\right)\right\rangle \geq 0 \quad$ this should be zero
- PQG are not consistent: $\mathbf{C}_{\mathbf{2}}, \mathbf{C O} 33.3 \mathrm{mH}$, and 5.8 mH .
- PQG seems to be size-extensive [Mazziotti et al. 2005].
- $\mathbf{H}_{2} \mathbf{O}, \mathbf{N H}_{\mathbf{3}}$ and $\mathbf{N}_{\mathbf{2}}$ are size consistent. (if molecules dissociates to \mathbf{H}, it seems to be size consistent) [JCP 2002]
- Reduce spin number by adding ghost hydrogen atoms [Hammond Mazziotti 2005].
- See also "Dissociation Curves from ...Density Matrices:..." P.Bultink et al. 1552 PT3 [Bultink et al. PCCP 20091

Ensemble N-representability problem: zero dipole

\mathbf{H}_{3} is a meta stable molecule and have two dipole moments at the ground state.

- SDP solver calculates ensemble average of these two dipole moments.
- Adding small perturbation can remove this.
[Fukuda et al 2007][Nakata et al. 2008]

non- N-representability: Spin degeneracy

- Spin degeneracy will be observed when $\boldsymbol{S} \neq \mathbf{0}$.
- E.g., $\boldsymbol{S}=\mathbf{1}$, then the total energies of three states $S_{z}=1,0,-1$ will degenerate.
- Including T1, T2' recovers, but not complete.
- This is a source of non-size consistency or size-extensively.

System	State	basis	$\operatorname{corr}^{\text {PQG }}$	corr ${ }_{\text {T1 }}$	$\operatorname{corr} E_{T 12^{\prime}}$
C	${ }^{3} P_{1}$	double- ζ	107.5\%	105.9\%	100.1\%
C	${ }^{3} P_{0}$	double- ζ	133.4\%	126.0\%	103.9\%
0	${ }^{3} P_{1}$	double- ζ	117.4\%	109.4\%	101.1\%
0	${ }^{3} P_{0}$	double- ζ	134.4\%	127.4\%	102.3\%

corrE means correlation energy error in percentage
[Nakata et al. 2008]

Properties becomes better like total energy?

- The total energy becomes higher when we add a new N-representability conditions:

$$
E_{P Q} \leq E_{P Q G} \leq E_{P Q G T 1} \leq E_{P Q G T 1 T 2} \leq \cdots \leq E_{\mathrm{FCI}}
$$

No such kind of conditions for properties, but we USUALLY have a following sequence: [Nakata et al 2008]

$$
\left|\mu_{P Q G}-\mu_{\mathrm{FCI}}\right| \leq\left|\mu_{P Q G T 1}-\mu_{\mathrm{FCI}}\right| \leq\left|\mu_{P Q G T 2}-\mu_{\mathrm{FCI}}\right| \leq 0
$$

μ is the dipole moment of atoms and molecules. Can be arbitrary operators up to 2-body.

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1}+\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1}+\mathbf{0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$
- GMP (60 digits; can be arbitrary)

$$
1+0.001 \simeq 1
$$

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$
- GMP (60 digits; can be arbitrary)
$1+\mathbf{0 . 0 1 \simeq 1}$
- GMP (GNU multiple precision)

Necessity of highly accurate solver

- SDP results are usually not accurate; typically 8 digits or so.
- When the ground state is degenerated, the SDP becomes more difficult when approaching to the exact optimal.
- WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!
- double (16 digits) $\mathbf{1 + 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1} \simeq \mathbf{1}$
- GMP (60 digits; can be arbitrary) $1+\mathbf{0 . 0 1 \simeq 1}$
- GMP (GNU multiple precision) \Rightarrow necessity of highly accurate solver, using multiple precision arithmetic (SDPA-GMP) http://sdpa.indsys.chuo-u.ac.jp/sdpa/ GNU Public License

SDPA-GMP and Hubbard model

The 1D Hubbard model with high correlation limit $|\boldsymbol{U} / \boldsymbol{t}| \rightarrow \infty$: All states are almost degenerated.

The ground state energies of 1D Hubbard model
PBC, \# of sites:4, \# of electrons: 4, spin 0

U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCl
10000.0	0	-1.1999998800000251 $\times 10^{-3}$	-1.199999880 $\times 10^{-3}$
1000.0	-1.2 $\times 10^{-2}$	-1.1999880002507934 $\times 10^{-2}$	$-1.1999880002 \times 10^{-2}$
100.0	-1.1991×10^{-1}	-1.1988025013717993 $\times 10^{-1}$	-1.19880248946 $\times 10^{-1}$
10.0	-1.1000	-1.0999400441222934	-1.099877772750
1.0	-3.3417	-3.3416748070259956	-3.340847617248
PBC, \# of sites:6, \# of electrons: 6, spin 0			
U/t	SDPA (16 digits)	SDPA-GMP (60 digits)	fullCl
10000.0	0	-1.7249951195749525 $\times 10^{-3}$	-1.721110121 $\times 10^{-3}$
1000.0	-1×10^{-2}	$-1.7255360310431304 \times 10^{-2}$	$-1.7211034713 \times 10^{-2}$
100.0	-1.730×10^{-1}	$-1.7302157140594339 \times 10^{-1}$	-1.72043338097 $\times 10^{-1}$
10.0	-1.6954	-1.6953843276854447	-1.664362733287
1.0	-6.6012	-6.6012042217806286	-6.601158293375

Excited states systems

- RPA: [Garrod et al 1980] [Mazziotti 2003] \rightarrow can go beyond?
- McDonald's variational principle [Nakata et al 2006][Erdahl Grudziński 1978][Yasuda 2002] \rightarrow Excited states of one-particle Hamiltonian: essentially difficult problem. Related to 2-particle density, too.

Open problems

- Urgent How to recover size extensively and/or consistency
- Urgent Large scale semi-definite programming solver.
- Degeneracy problems.
- Understanding N-representability conditions: Physical and Chemical meaning.
- How to find "a good" \boldsymbol{N}-representability conditions.

Open problems

- Urgent How to recover size extensively and/or consistency
- Urgent Large scale semi-definite programming solver.
- Degeneracy problems.
- Understanding N-representability conditions: Physical and Chemical meaning.
- How to find "a good" \boldsymbol{N}-representability conditions.

> WELCOME TO THE JUNGLE!

Missing topics

I missed many very very interesting areas

- Density equation / contracted Schrödinger equation and its variants.
- 1-RDM functional theories.
- 2-RDM parametrization theories.
- 2-particle density functional theories.

How large these SDP are?

\# of constraints

r constraints block

24	15018	$2520 \times 2,792 \times 4,288 \times 1,220 \times 2$
26	20709	$3211 \times 2,1014 \times 4,338 \times 1,286 \times 2$

Elapsed time using Itanium 2 (1.3 GHz) 1 node 4 processors. System, State, Basis N-rep. $\quad r \quad$ Time $\#$ of nodes $\mathbf{S i H}_{4},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, STO-6G PQGT1T2 $26 \quad 5.1$ days $\quad 16$ $\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{\mathbf{1}}$, double- $\boldsymbol{\zeta} \quad \boldsymbol{P Q G} \quad 28 \quad 2.2$ hours $\quad 8$ $\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{1}$, double- $\zeta \quad$ PQGT1T2 $28 \quad 20$ days $\quad 8$ $\begin{array}{lllll}\mathbf{H}_{\mathbf{2}} \mathbf{O},{ }^{1} \boldsymbol{A}_{\mathbf{1}}, \text { double- } \zeta & \boldsymbol{P Q G T 1 T 2} & 28 & 24 \text { days } & 8\end{array}$

