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Overview

Motivation
Introduction of the RDM method
Review of results.
Some open problems (negative results).
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Doing Chemistry from the first principle

Prediction of chemical reaction, if and only if possible�� ��from the first principle

Motivation: Construct a faster, simpler method for
Chemistry.
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Candidate: the RDM method

The RDM method: 2-RDM as basic variable

Γ(12|1′2′)
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Basic equation: Schrödinger equation

Hamiltonian H

H =
N∑

j=1

− ~2

2me
∇2

j −
K∑
A

Z Ae2

4πε0rA j

 +∑
i> j

e2

4πε0ri j

Schrödinger equation

HΨ(1, 2, · · · N) = EΨ(1, 2, · · · N)

Pauli principle
Ψ(· · · , i, · · · , j, · · · ) = −Ψ(· · · , j, · · · , i, · · · )
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Solving Schrödinger equation is difficult

We know the basic equation but...

The general theory of quantum
mechanics is now almost com-
plete. · · · the whole of chemistry
are thus completely known, and
the difficultly is only that the exact
application of these laws leads to
equations much too complected
to be soluble.

He has never think about computational complexity and it’s NP-hard :-)

[Dirac 1929] “Quantum Mechanics of Many-Electron Systems.”
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A simpler quantum mechanical method

A success story: “The Density Functional Theory”
[Hoheberg-Kohn 1964] [Kohn-Sham 1965][Kohn 1998; Nobel Prize]

Ground state electronic density ρ(r)
⇓

external potential v(r)
⇓

Hamiltonian H
⇓

Schrödinger equation

Very difficult functional F[ρ(r)]. Practically this is
semi-empirical theory.
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Preferable methods for chemistry

From the first principle.
Separability or nearsightedness: split a whole
system into subsystems.
Language: better understanding of chemistry and
physics.
Low scaling cost.

�
�

�
�The RDM method!
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The RDM method

The second-order reduced density matrix:
[Husimi 1940], [Löwdin 1954], [Mayer 1955], [Coulson 1960], [Nakatsuji 1976]

Γ(12|1′2′) =
(
N
2

) ∫
Ψ∗(123 · · · N)Ψ(1′2′3 · · · N)dµ3···N

Can we construct simpler quantum chemical method
using Γ(12|1′2′) as a basic variable?

�



�
	Yes
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Comparison

Method # of variable (discritized) Exact?
Ψ N, (r!) Yes

Γ(12|1′2′) 4, (r4) Yes

Do not depend on the size of the system
Equivalent to Schrödinger eq. (ground state)
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Definition of 1,2-RDM

The Hamiltonian contains only 1 and 2-particle
interaction.

H =
∑

i j

vi
ja
†
i
a j +

1
2

∑
i1i2 j1 j2

wi1i2
j1 j2

a†
i1

a†
i2

a j2 a j1

The total energy E becomes,

E =
∑

i j

vi
j〈Ψ|a

†
i
a j|Ψ〉 +

1
2

∑
i1i2 j1 j2

wi1i2
j1 j2
〈Ψ|a†

i1
a†

i2
a j2 a j1|Ψ〉

=
∑

i j

vi
jγ

i
j +

∑
i1i2 j1 j2

wi1i2
j1 j2
Γ

i1i2
j1 j2
.
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Definition of 1,2-RDM

Here we defined the second-order reduced density
matrix Γi1i2

j1 j2
(2-RDM)

Γ
i1i2
j1 j2
=

1
2
〈Ψ|a†

i1
a†

i2
a j2 a j1|Ψ〉,

and the first-order reduced density matrix γi
j
(1-RDM)

γi
j = 〈Ψ|a

†
i
a j|Ψ〉.
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The ground state and energy calculation

The ground state energy and 2-RDM can be obtained
[Rosina 1968]

Eg = min
Ψ
〈Ψ|H|Ψ〉

= min
γ,Γ

∑
i j

vi
jγ

i
j +

∑
i1 i2 j1 j2

wi1 i2
j1 j2
Γ

i1 i2
j1 j2


[Mayers 1955], [Tredgold 1957]: Far lower than the exact one�



�
	N-representability condition

[Coleman 1963]
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N-representability condition

N-representability condition [Coleman 1963]

Γ(12|1′2′) → Ψ(123 · · · N) or full Density Matrix

γ(1|1′) → Ψ(123 · · · N) or full Density Matrix
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Complete N-representability condition is
very difficult

Computational complexity for complete N-representability

Basically every N-rep. condition is linear constraint.

Optimization over diagonal N-representable 2-RDM:
NP-hard [Deza, Laurent 1997]

Decision problem “is this 2-RDM N-representable?”
QMA-complete, NP-hard [Liu 2007]

Coleman’s algorithm [Beste, et al 2002] [Coleman 2000].

Very difficult and hopeless :-(
[See also “Complexity and Electronic Structure Theory” B.J. Braams 741 PT11 16:40 Monday]
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Approximate N-representability condition

Approximation (necessary) condition : where Physics and
Chemistry are

P, Q-condition, ensemble 1-RDM condition [Coleman 1963]

G-condition [Garrod et al. 1964]

k-th order approximation [Erdahl, Jin 2000] (aka k-positivity
[Mazziotti Erdahl 2001])

T1, T2, T2′, (T̄2)-condition [Zhao et al. 2004], [Erdahl 1978]
[Braams et al 2007] [Mazziotti 2006, 2007]

Davidson’s inequality [Davidson 1969][Ayers et al. 2006]

Construction of 2-particle density [Pistol 2004, 2006]
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[Mazziotti Erdahl 2001])

T1, T2, T2′, (T̄2)-condition [Zhao et al. 2004], [Erdahl 1978]
[Braams et al 2007] [Mazziotti 2006, 2007]

Davidson’s inequality [Davidson 1969][Ayers et al. 2006]

Construction of 2-particle density [Pistol 2004, 2006]
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PSD type N-representability conditions

P,Q,G,T1,T2-matrix are all positive semidefinite↔
eigenvalues λi ≥ 0

U†ΓU =


λ1 0
λ2
. . .

0 λn

 � 0

First application to Be atom
[Garrod et al 1975, 1976]

Calculation methods are not very well studied...
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Realization of the RDM method for atoms
and molecules

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming
We solved exactly for the first time!

Small enough “primal dual gap, feasibility” values show that total energies etc are MATHEMATICALLY correct

NAKATA, Maho (RIKEN, ACCC) The Reduced Density Matrix Method: Current status and open problemsCSC2009 19 / 37



Realization of the RDM method for atoms
and molecules

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming
We solved exactly for the first time!

Small enough “primal dual gap, feasibility” values show that total energies etc are MATHEMATICALLY correct

NAKATA, Maho (RIKEN, ACCC) The Reduced Density Matrix Method: Current status and open problemsCSC2009 19 / 37



Realization of the RDM method for atoms
and molecules

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming
We solved exactly for the first time!

Small enough “primal dual gap, feasibility” values show that total energies etc are MATHEMATICALLY correct

NAKATA, Maho (RIKEN, ACCC) The Reduced Density Matrix Method: Current status and open problemsCSC2009 19 / 37



Realization of the RDM method for atoms
and molecules

Eg = Min
Γ∈P

TrHΓ
P = {Γ : Approx. N-rep.condition}

[Nakata-Nakatsuji-Ehara-Fukuda-Nakata-Fujisawa 2001]
[Nakata-Nakatsuji-Ehara 2002]

Semidifinite programming
We solved exactly for the first time!

Small enough “primal dual gap, feasibility” values show that total energies etc are MATHEMATICALLY correct

NAKATA, Maho (RIKEN, ACCC) The Reduced Density Matrix Method: Current status and open problemsCSC2009 19 / 37



The ground state energy of atoms and molecules [Nakata et al 2008]

System State N r ∆ EGT1T2 ∆ EGT1T2′ ∆ ECCSD(T) ∆ EHF EFCI
C 3 P 6 20 −0.0004 −0.0001 +0.00016 +0.05202 −37.73653
O 1 D 8 20 −0.0013 −0.0012 +0.00279 +0.10878 −74.78733
Ne 1S 10 20 −0.0002 −0.0001 −0.00005 +0.11645 −128.63881
O+

2
2Πg 15 20 −0.0022 −0.0020 +0.00325 +0.17074 −148.79339

BH 1Σ+ 6 24 −0.0001 −0.0001 +0.00030 +0.07398 −25.18766
CH 2Πr 7 24 −0.0008 −0.0003 +0.00031 +0.07895 −38.33735
NH 1∆ 8 24 −0.0005 −0.0004 +0.00437 +0.11495 −54.96440
HF 1Σ+ 14 24 −0.0003 −0.0003 +0.00032 +0.13834 −100.16031
SiH4

1 A1 18 26 −0.0002 −0.0002 +0.00018 +0.07311 −290.28490
F− 1S 10 26 −0.0003 −0.0003 +0.00067 +0.15427 −99.59712
P 4S 15 26 −0.0001 −0.0000 +0.00003 +0.01908 −340.70802
H2O 1 A1 10 28 −0.0004 −0.0004 +0.00055 +0.14645 −76.15576

GT1T2 : The RDM method (P,Q,G, T1 and T2 conditions)
GT1T2′ : The RDM method (P,Q,G, T1 and T2′ conditions)
CCSD(T) : Coupled cluster singles and doubles with perturbation treatment of triples
HF : Hartree-Fock
FCI : FullCI
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Application to potential energy curve

Dissociation curve of N2 (triple bond) the world first result.
[Nakata-Nakatsuji-Ehara 2002]
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Summary of typical results

Typical results
N-rep. Correlation energy(%) dissociation limit
PQG 100 ∼ 130% yes

PQGT1T2′ 100 ∼ 101% yes
CCSD(T) 100 ∼ 101% no�� ��Hopeful

([Nakata-Nakatuji-Ehara-Fukuda-Nakata-Fujisawa 2001] [Nakata et

al.2002][Zhao et al. 2004][Mazziotti et al. 2002,3,4,5,6,7,8,9][Eric et al

2006][Fukuda et al 2007][Nakata et al 2008] )

[See also “Variational Detremination of the Two Particle Reduced Density Matrix”, B. Verstichel 1319 PTP Tuesday]
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Essentials of [Nakata et al. 2001, 2002] with P, Q, G-condition

JCP 114,8282(2001), JCP 116, 5432(2002).

Exact minimization was performed for the first time.
Since mid of 1990, solvers are developed mathematical
programming community. Among them the SDPA the fastest,
and exact. Everyone is doing SDP without aware of it :)

G-condition is mandatory for chemistry: related to AGP wf
(corr. ene. 100%∼130%)

P, Q conditions are not sufficient (corr. ene. 200 ∼ 800%)

The 3rd, 4th order approx. are not essential

In 2000 Erdahl and Jin:“The poor quality of the second-order
estimates is consistent with the work of Mihailovic and Rosina...”
In 2001, Mazziotti and Erdahl: Lipkin model. Table IV: correlation
energies are 478-5238% with P, Q, G conditions (in 2005 silently
corrected by Hammond, Mazziotti and Erdahl(?)).
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Importance of [Zhao-Braams-Fukuda-Percus-Overton 2004] with

T1, T2-conditions
JCP 120, 2095(2004).

Formulation of T1 and T2 conditions

Total energies became comparable to CCSD(T)
We can do Chemistry with these conditions!!!
Not a trivial formulation.

Dual SDP formulation
Lager calculation is possible

They gave us a hope to realization of the RDM method
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How large we can calculate until now?
“size” is how many active orbitals are used

Who Year Size N-rep. system
Garrod et al. 1976 ? PQG Be

Erdahl 1979 ? PQG He2
Nakata et al. 2001 8 PQG H3O+
Nakata et al. 2002 8 PQG C2,CO,N2
Zhao et. al 2004 10 PQGT1T2 H3O+
Mazziotti 2004 14-18 PQG N2,H6

Gidofalvi et.al. 2005 14-20(?) PQG N2,C2
Eric et. al 2006 15 PQG NH3

Hammond et. al 2006 14 PQGT2 Hubbard model
Fukuda et al. 2007 13 PQGT1T2 CH3N
Nakata et al. 2008 14 PQGT1T2′ H2O

Greenman et al. 2009 8 PQGT2 CAS(Benzene etc.)
Greenman et al. 2009 12-24 PQG CAS(Pentacyne etc.)
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Open problems

How many iterations are needed?
Size consistency or extensively.
Degeneracy.
Diagonal representability and excited states.
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How many iterations are needed?

How many iterations are required by

primal-dual interior-point method (PDIPM) or

Monteiro-Bruner method (RRSDP) [Mazziotti 2004]

P, Q, and G P, Q, G, T1, T2
algorithm flops # iterations memory flops # iterations memory
PDIPM r12 r ln ε−1 r8 r12 r3/2 ln ε−1 r8

RRSDP r6 none r4 r9 none r6

Note: when we stop the iteration is a big problem
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Lacking size consistency and/or extensively

G-condition servers as a necessary condition to size
consistent and/or extensively [Nakata et al. 2002]

lim
|1−1′|→∞

F(1|1′) = 〈n(1)n(1′)〉 − 〈n(1)〉〈n(1′)〉 ≥ 0 this should be zero

PQG are not consistent: C2, CO 33.3mH, and 5.8mH.

PQG seems to be size-extensive [Mazziotti et al. 2005].

H2O, NH3 and N2 are size consistent. (if molecules
dissociates to H, it seems to be size consistent) [JCP 2002]

Reduce spin number by adding ghost hydrogen atoms
[Hammond Mazziotti 2005].

See also “Dissociation Curves from ...Density Matrices:...”
P.Bultink et al. 1552 PT3 [Bultink et al. PCCP
2009]
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Ensemble N-representability problem: zero
dipole

H3 is a meta stable molecule and have two dipole
moments at the ground state.

µfullCI µHF µPQG µPQGT1 µPQGT1T2′

0.85948 0.92110 0 0 0

SDP solver calculates ensemble average of these
two dipole moments.
Adding small perturbation can remove this.

[Fukuda et al 2007][Nakata et al. 2008]
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non-N-representability: Spin degeneracy

Spin degeneracy will be observed when S , 0.

E.g., S = 1, then the total energies of three states
Sz = 1, 0,−1 will degenerate.

Including T1, T2′ recovers, but not complete.

This is a source of non-size consistency or size-extensively.

System State basis corrEPQG corrET1 corrET1T2′

C 3 P1 double-ζ 107.5% 105.9% 100.1%
C 3 P0 double-ζ 133.4% 126.0% 103.9%
O 3 P1 double-ζ 117.4% 109.4% 101.1%
O 3 P0 double-ζ 134.4% 127.4% 102.3%

corrE means correlation energy error in percentage

[Nakata et al. 2008]
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Properties becomes better like total energy?

The total energy becomes higher when we add a new
N-representability conditions:

EPQ ≤ EPQG ≤ EPQGT1 ≤ EPQGT1T2 ≤ · · · ≤ EFCI

No such kind of conditions for properties, but we USUALLY
have a following sequence: [Nakata et al 2008]

|µPQG − µFCI| ≤ |µPQGT1 − µFCI| ≤ |µPQGT2 − µFCI| ≤ 0

µ is the dipole moment of atoms and molecules. Can be
arbitrary operators up to 2-body.
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Necessity of highly accurate solver

SDP results are usually not accurate; typically 8 digits or so.

When the ground state is degenerated, the SDP becomes
more difficult when approaching to the exact optimal.

WE NEED MORE DIGITS, FOR EXAMPLE 60 DIGITS!

double (16 digits) 1 + 0.00000000000000001 ' 1

GMP (60 digits; can be arbitrary)
1 + 0.000000000000000000000000000000000000000000000000000000000001 ' 1

GMP (GNU multiple precision)⇒ necessity of highly
accurate solver, using multiple precision arithmetic
(SDPA-GMP) http://sdpa.indsys.chuo-u.ac.jp/sdpa/
GNU Public License
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SDPA-GMP and Hubbard model
The 1D Hubbard model with high correlation limit
|U/t| → ∞: All states are almost degenerated.

The ground state energies of 1D Hubbard model
PBC, # of sites:4, # of electrons: 4, spin 0

U/t SDPA (16 digits) SDPA-GMP (60 digits) fullCI
10000.0 0 −1.1999998800000251 × 10−3 −1.199999880 × 10−3

1000.0 −1.2 × 10−2 −1.1999880002507934 × 10−2 −1.1999880002 × 10−2

100.0 −1.1991 × 10−1 −1.1988025013717993 × 10−1 −1.19880248946 × 10−1

10.0 −1.1000 −1.0999400441222934 −1.099877772750
1.0 −3.3417 −3.3416748070259956 −3.340847617248

PBC, # of sites:6, # of electrons: 6, spin 0
U/t SDPA (16 digits) SDPA-GMP (60 digits) fullCI

10000.0 0 −1.7249951195749525 × 10−3 −1.721110121 × 10−3

1000.0 −1 × 10−2 −1.7255360310431304 × 10−2 −1.7211034713 × 10−2

100.0 −1.730 × 10−1 −1.7302157140594339 × 10−1 −1.72043338097 × 10−1

10.0 −1.6954 −1.6953843276854447 −1.664362733287
1.0 −6.6012 −6.6012042217806286 −6.601158293375
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Excited states systems

RPA: [Garrod et al 1980] [Mazziotti 2003]→ can
go beyond?
McDonald’s variational principle [Nakata et al
2006][Erdahl Grudziński 1978][Yasuda 2002]→
Excited states of one-particle Hamiltonian:
essentially difficult problem. Related to 2-particle
density, too.
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Open problems

Urgent How to recover size extensively and/or
consistency
Urgent Large scale semi-definite programming
solver.
Degeneracy problems.
Understanding N-representability conditions:
Physical and Chemical meaning.
How to find “a good” N-representability conditions.

�� ��WELCOME TO THE JUNGLE!
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Missing topics

I missed many very very interesting areas
Density equation / contracted Schrödinger
equation and its variants.
1-RDM functional theories.
2-RDM parametrization theories.
2-particle density functional theories.
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How large these SDP are?

# of constraints
r constraints block

24 15018 2520x2, 792x4, 288x1,220x2
26 20709 3211x2, 1014x4, 338x1, 286x2

Elapsed time using Itanium 2 (1.3GHz) 1 node 4 processors.
System, State, Basis N-rep. r Time # of nodes
SiH4, 1 A1, STO-6G PQGT1T2 26 5.1 days 16
H2O, 1 A1, double-ζ PQG 28 2.2 hours 8
H2O, 1 A1, double-ζ PQGT1T2 28 20 days 8
H2O, 1 A1, double-ζ PQGT1T2′ 28 24 days 8
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